• Title/Summary/Keyword: synchronous state

Search Result 411, Processing Time 0.022 seconds

Precise Position Synchronous Control of Four-Axes System Based on Acceleration Control (가속도제어에 의한 4축 시스템의 정밀 위치동기제어)

  • Jeong, Seok-Kwon;Choi, Bong-Seok;You, Sam-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1245-1254
    • /
    • 2004
  • In this paper, we deal with a precise position synchronous control of four-axes system which is working under various load disturbances. Each axis driving system is consisted of a speed controller and an acceleration controller as an inner loop instead of conventional current control scheme. The acceleration control plays an important roll to suppress load disturbances quickly. Also, each axis is coupled by a maximum position synchronous error comparison to minimize position synchronous errors according to integration of speed differency. As a result, the proposed system enables precise synchronous control with good robustness against load disturbances during transient as well as steady state. The stability and robustness of the proposed system are investigated through its frequency characteristic and numerical simulations. Finally, experimental results under load disturbances demonstrate the effectiveness of the proposed control system fur four-axes position synchronous control.

Parallel Reduced-Order Square-Root Unscented Kalman Filter for State Estimation of Sensorless Permanent-Magnet Synchronous Motor (센서리스 영구자석 동기전동기의 상태 추정을 위한 병렬 축소 차수 제곱근 무향 칼만 필터)

  • Moon, Cheol;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1019-1025
    • /
    • 2016
  • This paper proposes a parallel reduced-order square-root unscented Kalman filter for state estimation of a sensorless permanent-magnet synchronous motor. The appearance of an unscented Kalman filter is caused by the linearization process error between a real system and classical Kalman model. The unscented transformation can make a more accurate Kalman model. However, the complexity is its main drawback. This paper investigates the design and implementation of the proposed filter with Potter and Carlson square-root form. The proposed parallel reduced-order square-root unscented Kalman filter reduces memory and code size, and improves numerical computation. And the performance is not significantly different from the unscented Kalman filter. The experimentation is performed for the verification of the proposed filter.

Computer Aided Design of Sequential Logic Circuits (Case of Synchronous Sequential Logic Circuits) (컴퓨터를 이용한 순차 논리 회로의 설계 (동기식 순차 논리 회로의 경우))

  • 김경식;조동섭;황희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.4
    • /
    • pp.134-139
    • /
    • 1984
  • This paper presents the computer program to design the synchronous sequential logic circuit. The computer program uses the MASK method to get the circuit of optimal cost. The computer program takes as an input, the minimal reduced state transition table where each state has its internal code. As an output,the optimal design of synchronous sequential logic circuit is generated for each flipflop type of JK,T,D, and RS respectively. And these circuits for 4 flipflop types are evaluated and sorted in ascending order of their costs, so that the user can select the proper flipflop type and its circuit. Furthermore,the proposed computer program may be applied to state assignment with its facility of cost evaluation.

  • PDF

Improvement of Synchronous Motor Transient Stability by Phase Slipping (상변위에 의한 동기전동기의 과도안정도 개선)

  • Song Yop Hahn
    • 전기의세계
    • /
    • v.21 no.2
    • /
    • pp.20-24
    • /
    • 1972
  • The transient stability of the synchronous motor is generally improved by damper winding or flywheel. However the synchronous motor at full load will be pulled out from normal operation state when the period of power failure exceeds approximately ten cycle per second. This paper studies the method of improving the stability of synchronous motor by equipping the phase slipping switch between the motor and power source. This paper shows the motor does not pull out, which results from the decrease of power angle to about 30 electrical degrees by means of the switch even when the relatively long period of power failure brings the power angle to some 150 electrical degrees.

  • PDF

A study on the Synchronous Machine Modeling by Parameter Modification (매계분수 기정에 의한 동기식의 모델링에 관한 연구)

  • 김준현;유석구;설용태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.11
    • /
    • pp.379-386
    • /
    • 1983
  • In this paper,the more accurate and simple synchronous machine model is derived by parameter modification method. At first, the flux linkage state space model is composed by redefining the parameters of synchronous machine and considering the saturation effect approximately. After that, this modified model is apply to the power system model and the effects of power system stability is analyzed by this model's characteristics in fault condition. As the result, the modified synchronous machine model shows more accurate and simple than the privious one.

  • PDF

The DLB Method for Multimedia Synchronization in the ATM Networks (ATM 망에서 멀티미디어 동기화를 위한 DLB 기법)

  • 구경옥;이병수;조용환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.842-854
    • /
    • 1997
  • In this paper, the improved Dual Leaky-Bucket(DLB) algorithm is proposed to reduce the synchronous cell loss rate. The conventional DLB algorithm does not support synchronous cells, but the proposed algorithm gives higher priority to synchronous cells. To reduce synchronous cell loss rate, the synchronous cell detector is used in the proposed algorithm. Synchronous cell detector detects synchronous cells, and passes them cells to the 2nd Leaky-Bucket. So it is similar to give higher priority to synchronous cells. In this paper, the proposed algorithm used audio/videl traffic modeled by On/Off and Two-state MMPP, and simulated by SLAM II package. As simulation results, the proposed algorithm gets lower synchronous cell loss rate than the conventional DLB algorithms. The improved DLB algorithm for multimedia synchronization can be extended to any other cells which require higher priority.

  • PDF

High Performance Current Control Algorithm Based on Virtual DQ Synchronous Reference Frame for Single-Phase Boost PFC Converter (단상 부스트 PFC 컨버터용 가상 DQ 동기좌표계 기반 고성능 전류제어 알고리즘)

  • Kim, Hyun-Geun;Jin, Seong-Min;Lee, Sang-Hee;Lee, Su-Hyoung;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.496-503
    • /
    • 2017
  • This study proposes a high-performance current control algorithm for a diode-bridge-type single-phase boost power factor correction (PFC) converter. The conventional asynchronous single-phase current controllers that directly control AC-type current tend to be accompanied by steady-state errors due to their poor dynamic characteristics for the transient-state, which can be attributed to bandwidth limitations and phase delays. In the proposed algorithm, an ideal current control with minimal phase delays and steady-state errors can be achieved by using a virtual DQ synchronous reference frame and by controlling the synchronous reference frame excluding the frequency component in the single-phase system. The performance of the conventional asynchronous single-phase current controller is compared with that of the proposed algorithm through simulation and experiments, and the results have confirmed the superiority of the latter.

Study on Pulling-Into-Step of Induction Synchronous Motor (유도동기전동기의 동기화 한계에 관한 연구)

  • 박민호;홍순찬
    • 전기의세계
    • /
    • v.24 no.2
    • /
    • pp.78-83
    • /
    • 1975
  • There are many studies recently, on a wound rotor induction motor operation as synchronous rotating speed, and such an induction motor is so called an induction synchronous motor. In above desciption the region of pull into-step that the wound rotor induction motor as a synchronous motor has not been calculated. This paper deals with such a region. Generally, induction synchronous motor is different from a synchronous motor in many respects. In considering these respects, characteristic equations of motion for this motor are induced adoption small signal linearization, continuous quasili-nearization and state variable grouping technique. For pulling-into-step of Induction Synchronous Motor, we first analyze these equations with digital computer and compare the former with datas calculated by motor experimentation.

  • PDF

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

Performance Improvement Strategy for Parallel-operated Virtual Synchronous Generators in Microgrids

  • Zhang, Hui;Zhang, Ruixue;Sun, Kai;Feng, Wei
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.580-590
    • /
    • 2019
  • The concept of virtual synchronous generators (VSGs) is a valuable means for improving the frequency stability of microgrids (MGs). However, a great virtual inertia in a VSG's controller may cause power oscillation, thereby deteriorating system stability. In this study, a small-signal model of an MG with two paralleled VSGs is established, and a control strategy for maintaining a constant inertial time with an increasing active-frequency droop coefficient (m) is proposed on the basis of a root locus analysis. The power oscillation is suppressed by adjusting virtual synchronous reactance, damping coefficient, and load frequency coefficient under the same inertial time constant. In addition, the dynamic load distribution is sensitive to the controller parameters, especially under the parallel operation of VSGs with different capacities. Therefore, an active power increment method is introduced to improve the precision of active power sharing in dynamic response. Simulation and experimental is used to verify the theoretical analysis findings.