• 제목/요약/키워드: synchronous generator

검색결과 561건 처리시간 0.025초

가변속 풍력 발전용 영구자석형 동기발전기의 적응 슬라이딩 모드 제어기 설계 (Adaptive Sliding Mode Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System)

  • 김성수;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.315-319
    • /
    • 2016
  • This paper proposes a simple adaptive sliding mode control algorithm for controlling a permanent magnet synchronous generator (PMSG) of a MW-class direct-driven wind turbine system. The proposed adaptive sliding mode controller does not require accurate knowledge of the PMSG parameter or turbine torque values. The proposed controller can accurately track the reference angular speed computed by the maximum power point tracking(MPPT) algorithm. Finally, this paper gives Matlab/Simulink simulation results to verify the practicality and effectiveness of the proposed adaptive sliding mode controller.

Single-Phase Virtual Synchronous Generator for Distributed Energy Resources Integration

  • Zeng, Zheng;Cheng, Chong;Tang, Shengqing;Yang, Huan;Zhao, Rongxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권3호
    • /
    • pp.264-271
    • /
    • 2014
  • Virtual synchronous generator (VSG) in single-phase to interface distributed renewable energy resources is investigated in this paper. Mathematical models and numerical analysis are utilized to illustrate the features of the VSG. Enhanced control strategy is presented to ensure the performance of the VSG. Besides, a second order generalized integer (SOGI) is employed to calculate the instantaneous output power of the VSG in virtual ${\alpha}{\beta}$ frame. By the means of a phase-locked loop based scheme, the VSG can seamlessly transform between islanded and grid-tied modes, which can meet the requirements of micro-grid. At last, the validation and the proposed approach are verified by the simulated results using PSCAD/EMTDC.

Optimal Design of a Distributed Winding Type Axial Flux Permanent Magnet Synchronous Generator

  • You, Yong-Min;Lin, Hai;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.69-74
    • /
    • 2012
  • This paper presents a distributed winding type axial flux permanent magnet synchronous generator (AFPMSG) with reduced the total harmonic distortion (THD), suitable for wind turbine generation systems. Although the THD of the proposed distributed winding type is more reduced than the concentrated winding type, the unbalance of the phase back EMF occurs. To improve the unbalance of the phase back EMF and the output power of the distributed winding type AFPMSG, the Kriging based on the latin hypercube sampling (LHS) is utilized. Finally, these optimization results are confirmed by experimental results. As a result, the unbalance of the phase back EMF and the output power of the distributed winding type AFPMSG were improved while maintaining the total harmonic distortion (THD) and the average phase back EMF.

이산 웨이브렛 변환을 이용한 동기발전기 회전자 층간단락 진단에 관한 연구 (A Study of Shorted-Turn Detection in the Cylindrical Synchronous Generator Rotor Windings via Discrete Wavelet Transform)

  • 김영준;김장목
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.476-478
    • /
    • 2005
  • This paper describes a method for the detection of shorted-turn in the cylindrical synchronous generator rotor windings based on the discrete wavelet transform. Multi-resolution analysis(MRA) based on discrete wavelet transform provides a set of decomposed signals in independent frequency bands. In the proposed method, shorted-turn detection in rotor windings is based on the decomposition of the rotor currents, where wavelet coefficients of these signals have been extracted. Comparing these extracted coefficients is used for diagnosing the healthy machine from faulty machine. Experimental results show the effectiveness of the proposed method for shorted-turn detection in the cylindrical synchronous generator rotor windings.

  • PDF

영구자석 동기발전기의 설계 및 시제품 특성 분석에 관한 연구 (A Study on Design and Performance Analysis of a Prototype Permanent Magnet Synchronous Generator)

  • 오진훈
    • 조명전기설비학회논문지
    • /
    • 제28권7호
    • /
    • pp.75-80
    • /
    • 2014
  • The small wind turbines has the merits of setting up with low costs by individuals, and get the energy saving effects that, it has the secured, separate markets from the big range systems, and the developing of it is continuously proceeding. The objective of this paper is to provide the design characteristics analysis of a permanent magnet synchronous generator(PMSG) skewed for magnet of rotor, the main advantage to be explored with the use of a split core design is the reduction in manufacturing costs and its simplicity in manufacture, compared to the manufacturing costs of a core skew PM machine. This thesis is aiming mainly analyzing the characteristics of the prototype to verify through Finite Element Method(FEM) and tests.

IPMSG을 이용한 풍력 발전 시스템의 최대 출력화 제어 특성 (Characteristics of Maximization Output Control for Variable Wind Generation System Using IPMSG)

  • 문상필;허영환;김종석;박한석
    • 전기학회논문지P
    • /
    • 제65권3호
    • /
    • pp.151-157
    • /
    • 2016
  • This paper proposes the variable wind generation system based on the direct torque control(DTC)for the interior permanent magnet synchronous generator. The proposed system can achieve the MPPT control without wind speed in addition to the speed and position sensorless control as well as the conventional current control method. The DTC has several advantages such as simply system configuration, ease of the flux weakening control and the sensorless control. The experimental results show the performance of the proposed wind generation system.

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators

  • Baek, Jeihoon;Kwak, Sangshin;Toliyat, Hamid A.
    • Journal of Magnetics
    • /
    • 제18권1호
    • /
    • pp.65-73
    • /
    • 2013
  • In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.

고속으로 회전하는 표면부착형 영구자석 동기발전기의 마그넷 이탈방지 시스템 설계 (Design of Preventing Deviation System of Magnet for high Speed Rotated Surface Mounted Permanent Magnet Synchronous Generator)

  • 김영민;김정수;박선호;임민수;방조혁;류지윤
    • 풍력에너지저널
    • /
    • 제5권1호
    • /
    • pp.50-55
    • /
    • 2014
  • Surface Permanent-Magnetic-Synchronous-Generator (SPMSG) discussed in the present study has operational characteristics such as high rotational speed over 1,000 rpm and centrifugal force of 12 kN·m for each magnet. Structure-development analysis for the minimization of rotor-core weights and the maximization of thermal emission is performed by applying the aluminum-laminated cap which combines the advantages of IPM and SPM in order to overcome the difficulty that attaching the magnet to rotor-core only with an adhesive. In this study, the simulations in terms of structure and electromagnetic were performed with the variable parameters such as shape and thickness of laminated-cap and division method of magnet. As a result, condition for minimized centrifugal force with minimum loss is derived.

유도전동기를 발전기로 사용시 동작 특성 해석 (Analysis for the Operating Characteristics when the Induction Motor is Used as a Generator)

  • 김종겸
    • 신재생에너지
    • /
    • 제10권2호
    • /
    • pp.5-11
    • /
    • 2014
  • Squirrel cage induction motor is the main driving system of industrial field and familiar with its use in a large variety of applications. The structure and operating characteristics of induction generator is almost identical to induction motor, but the induction generator part is used restrictively from hydropower power and wind power development etc. Recently induction generator is commonly used for micro & small hydro power applications due to its simplicity, reliability, low cost and robustness. Input and output of induction motor has turned against at the induction generator operation. Rotation speed of induction generator is small faster than synchronous speed of induction motor. As output of induction machines increases with the increasement of speed, so loss is same. Actually, generator efficiency is lower than motor at this condition. If induction generator is connected with mechanical load such as increaser, total efficiency is decreased. Consequently the quality in compliance with an induction motor parameter applying like that in the generator is a possibility of having the error of some. In this paper, we analyzed that input, output, torque and efficiency of induction machine is different from each other above and below synchronous speed.

풍력 발전기용 3MW 매립형 영구자석동기발전기 해석 (The Analysis of 3MW Embedded Type PMSG for Wind Turbine)

  • 원정현;이상우;김동언;정진화;박현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.180.1-180.1
    • /
    • 2010
  • This paper introduces a 3MW embedded Permanent Magnet Synchronous Generator(PMSG) for wind turbine. The generator features 313mm stator inner radius and 974mm stator length. The blade rotor angular velocity is 15.7 rpm and the gear ratio is set to be 92.93. The nominal generator rpm at rated load is about 1459. The number of poles is six and embedded in the generator rotor. Embedded permanent magnet excitation shows higher reliability, and better efficiency. Using the finite element method, electromagnetic and thermal results are simulated by ANSYS and the results are summarized in this report.

  • PDF