• Title/Summary/Keyword: synchronized

Search Result 1,467, Processing Time 0.028 seconds

Seismic Data Processing Using BERT-Based Pretraining: Comparison of Shotgather Arrays (BERT 기반 사전학습을 이용한 탄성파 자료처리: 송신원 모음 배열 비교)

  • Youngjae Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.3
    • /
    • pp.171-180
    • /
    • 2024
  • The processing of seismic data involves analyzing earthquake wave data to understand the internal structure and characteristics of the Earth, which requires high computational power. Recently, machine learning (ML) techniques have been introduced to address these challenges and have been utilized in various tasks such as noise reduction and velocity model construction. However, most studies have focused on specific seismic data processing tasks, limiting the full utilization of similar features and structures inherent in the datasets. In this study, we compared the efficacy of using receiver-wise time-series data ("receiver array") and synchronized receiver signals ("time array") from shotgathers for pretraining a Bidirectional Encoder Representations from Transformers (BERT) model. To this end, shotgather data generated from a synthetic model containing faults was used to perform noise reduction, velocity prediction, and fault detection tasks. In the task of random noise reduction, both the receiver and time arrays showed good performance. However, for tasks requiring the identification of spatial distributions, such as velocity estimation and fault detection, the results from the time array were superior.

A Design and Implementation of Worker Motion 3D Visualization Module Based on Human Sensor

  • Sejong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.109-114
    • /
    • 2024
  • In this paper, we design and implement a worker motion 3D visualization module based on human sensors. The three key modules that make up this system are Human Sensor Implementation, Data Set Creation, and Visualization. Human Sensor Implementation provides the functions of setting and installing the human sensor locations and collecting worker motion data through the human sensors. Data Set Creation offers functions for converting and storing motion data, creating near real-time worker motion data sets, and processing and managing sensor and motion data sets. Visualization provides functions for visualizing the worker's 3D model, evaluating motions, calculating loads, and managing large-scale data. In worker 3D model visualization, motion data sets (Skeleton & Position) are synchronized and mapped to the worker's 3D model, and the worker's 3D model motion animation is visualized by combining the worker's 3D model with analysis results. The human sensor-based worker motion 3D visualization module designed and implemented in this paper can be widely utilized as a foundational technology in the smart factory field in the future.

Accuracy of 5-axis precision milling for guided surgical template (가이드 수술용 템플릿을 위한 5축 정밀가공공정의 정확성에 관한 연구)

  • Park, Ji-Man;Yi, Tae-Kyoung;Jung, Je-Kyo;Kim, Yong;Park, Eun-Jin;Han, Chong-Hyun;Koak, Jai-Young;Kim, Seong-Kyun;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • Purpose: The template-guided implant surgery offers several advantages over the traditional approach. The purpose of this study was to evaluate the accuracy of coordinate synchronization procedure with 5-axis milling machine for surgical template fabrication by means of reverse engineering through universal CAD software. Materials and methods: The study was performed on ten edentulous models with imbedded gutta percha stoppings which were hidden under silicon gingival form. The platform for synchordination was formed on the bottom side of models and these casts were imaged in Cone beam CT. Vectors of stoppings were extracted and transferred to those of planned implant on virtual planning software. Depth of milling process was set to the level of one half of stoppings and the coordinate of the data was synchronized to the model image. Synchronization of milling coordinate was done by the conversion process for the platform for the synchordination located on the bottom of the model. The models were fixed on the synchordination plate of 5-axis milling machine and drilling was done as the planned vector and depth based on the synchronized data with twist drill of the same diameter as GP stopping. For the 3D rendering and image merging, the impression tray was set on the conbeam CT and pre- and post- CT acquiring was done with the model fixed on the impression body. The accuracy analysis was done with Solidworks (Dassault systems, Concord, USA) by measuring vector of stopping’s top and bottom centers of experimental model through merging and reverse engineering the planned and post-drilling CT image. Correlations among the parameters were tested by means of Pearson correlation coefficient and calculated with SPSS (release 14.0, SPSS Inc. Chicago, USA) ($\alpha$ = 0.05). Results: Due to the declination, GP remnant on upper half of stoppings was observed for every drilled bores. The deviation between planned image and drilled bore that was reverse engineered was 0.31 (0.15 - 0.42) mm at the entrance, 0.36 (0.24 - 0.51) mm at the apex, and angular deviation was 1.62 (0.54 - 2.27)$^{\circ}$. There was positive correlation between the deviation at the entrance and that at the apex (Pearson Correlation Coefficient = 0.904, P = .013). Conclusion: The coordinate synchronization 5-axis milling procedure has adequate accuracy for the production of the guided surgical template.

Effects of Donor Cells and Estrus Synchronization on the Production of Cloned Korean Native Goat (공핵 세포 및 발정 동기화가 복제 재래 산양 생산에 미치는 영향)

  • Park H.S.;Kim T.S.;Jung S.Y.;Park J.K.;Lee J.S.;Jung J.Y.
    • Journal of Embryo Transfer
    • /
    • v.21 no.2
    • /
    • pp.137-146
    • /
    • 2006
  • The objective of this study was to examine the effect of donor cell types, the source of recipient oocytes and estrous synchronization on pregnancy and delivery rates of somatic cell nuclear transfer (SCNT) embryos in Korean native goats. Recipient oocytes were surgically collected after superovulation. Ear cells and fetal fibroblasts were collected and cultured in serum-starvation condition (TCM-199 + 0.5% FBS) for cell confluence. The zonae pellucidae of in vivo- and in vitro-matured oocytes were partially drilled using a laser system. Single somatic cell was transferred into the enucleated oocyte. The reconstructed oocytes were electrically fused with 0.3 M mannitol. After the fusion, embryos were activated by Ionomycin+6-DMAP. NT embryos were cultured in mSOF medium supplemented with 0.8% BSA at $39^{\circ}C$ in an atmosphere of 5% $CO_2$, 5% $O_2$, 90% $N_2$ for 12 to 20 hr. One hundred and two SCNT embryos were transferred into 20 recipients and pregnancy rate at days 30 was 20.0%. Of them, one developed to term and delivered 1 kid. Ear cells showed significantly higher fusion (63.8 vs. 26.5%) and pregnancy rates (20.0 vs. 0.0%) than those of fetal fibroblast (p<0.05). The recipients synchronized by CIDR showed significantly lower pregnancy rates compared to that of recipient in natural estrus ($0.0{\sim}25.0%$ vs. 100%) (p<0.05). Cloned kid was born from the recipient in natural estrus. For the synchronization of estrus between recipient and donor, there was no difference between treatments (${\pm}0$ vs. +12 hr) in pregnancy rate. The first healthy cloned kid (Jinsoonny) was produced by transfer of SCNT embryos derived from in vivo oocytes and ear cells into a recipient goat whose estrus was synchronized with the donor. These results imply that donor cells for nuclear transfer may affect the success rate, and the estrus synchronization between donor and recipient animals can also be important.

Brain Activation Pattern and Functional Connectivity during Convergence Thinking and Chemistry Problem Solving (융합 사고와 화학문제풀이 과정에서의 두뇌 활성 양상과 기능적 연결성)

  • Kwon, Seung-Hyuk;Oh, Jae-Young;Lee, Young-Ji;Eom, Jeung-Tae;Kwon, Yong-Ju
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.203-214
    • /
    • 2016
  • The purpose of this study was to investigate brain activation pattern and functional connectivity during convergence thinking based creative problem solving and chemistry problem solving to identify characteristic convergence thinking that is backbone of creative problem solving using functional magnetic resonance imaging(fMRI). A fMRI paradaigm inducing convergence thinking and chemistry problem solving was developed and adjusted on 17 highschool students, and brain activation image during task was analyzed. According to the results, superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, medial frontal gyrus, cingulate gyrus, precuneus and caudate nucleus body in left hemisphere and cuneus and caudate nucleus body in right hemisphere were significantly activated during convergence thinking. The other hand, middle frontal gyrus, medial frontal gyrus and caudate nucleus in left hemisphere and middle frontal gyrus, lingual gyrus, caudate nucleus, thalamus and culmen of cerebellum in right hemisphere were significantly activated during chemistry problem solving. As results of analysis functional connectivity, all of areas activated during convergence thinking were functionaly connected, whereas scanty connectivity of chemistry problem solving between right middle frontal gyrus, bilateral nucleus caudate tail and culmen. The results show that logical thinking, working memory, planning, imaging, languge based thinking and learning motivation were induced during convergence thinking and these functions and regions were synchronized intimately. Whereas, logical thinking and inducing learning motivation functioning during chemistry problem solving were not synchronized. These results provide concrete information about convergence thinking.

Analysis of Acquisition Parameters That Caused Artifacts in Four-dimensional (4D) CT Images of Targets Undergoing Regular Motion (표적이 규칙적으로 움직일 때 생기는 4DCT 영상의 모션 아티팩트(Motion Artifact) 관련된 원인분석)

  • Sheen, Heesoon;Han, Youngyih;Shin, Eunhyuk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.243-252
    • /
    • 2013
  • The aim of this study was to clarify the impacts of acquisition parameters on artifacts in four-dimensional computed tomography (4D CT) images, such as the partial volume effect (PVE), partial projection effect (PPE), and mis-matching of initial motion phases between adjacent beds (MMimph) in cine mode scanning. A thoracic phantom and two cylindrical phantoms (2 cm diameter and heights of 0.5 cm for No.1 and 10 cm for No.2) were scanned using 4D CT. For the thoracic phantom, acquisition was started automatically in the first scan with 5 sec and 8 sec of gantry rotation, thereby allowing a different phase at the initial projection of each bed. In the second scan, the initial projection at each bed was manually synchronized with the inhalation phase to minimize the MMimph. The third scan was intentionally un-synchronized with the inhalation phase. In the cylindrical phantom scan, one bed (2 cm) and three beds (6 cm) were used for 2 and 6 sec motion periods. Measured target volume to true volume ratios (MsTrueV) were computed. The relationships among MMimph, MsTrueV, and velocity were investigated. In the thoracic phantom, shorter gantry rotation provided more precise volume and was highly correlated with velocity when MMimph was minimal. MMimph reduced the correlation. For moving cylinder No. 1, MsTrueV was correlated with velocity, but the larger MMimph for 2 sec of motion removed the correlation. The volume of No. 2 was similar to the static volume due to the small PVE, PPE, and MMimph. Smaller target velocity and faster gantry rotation resulted in a more accurate volume description. The MMimph was the main parameter weakening the correlation between MsTrueV and velocity. Without reducing the MMimph, controlling target velocity and gantry rotation will not guarantee accurate image presentation given current 4D CT technology.

The Effect of Hand Massage on Pain and Anxiety Related to Chest Tube Removal in Patients with a Lobectomy (손마사지가 폐엽 절제술 환자의 흉관 제거시 통증과 불안에 미치는 영향)

  • Song Yeoung-Suk
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.9 no.1
    • /
    • pp.27-44
    • /
    • 2002
  • The main purpose of this study was to identify the effect of hand massage on pain and anxiety related to chest tube removal in patients with a lobectomy. The research design of this study was a nonequivalent control group non-synchronized design. Of the twenty nine adult subjects, fourteen were assigned to the experimental group and fifteen to the control group. The data were obtained over 3 months from a medical center in Seoul. The instruments used to assess trait state anxiety was the Spielberger Trait-State anxiety Inventory. For pain and psychological anxiety. The Visual Analogue Scale was used. Hiko analogue sphygmo-manometer(2001) was used to check blood pressure and pulse rate as indicators of physiological anxiety Subjects in the experimental group received hand massage for 5 minutes just before chest tube was removed, and subjects assigned to the control group did not receive hand massage. Data were analysed with $x^2$-test and Mann-Whitney U test using the SPSSWIN 10.0 program. The results of the study are as follows : 1. Hypothesis 1: 'there will be a significant difference between two groups in the level of pain after chest tube removal' was supported (u = 23.00, p < 0.001). 2. Hypothesis 2: 'there will be a significant difference between the two groups in the level of psychological anxiety after chest tube removal' was supported (u = 3.00, p < 0.001). 3. Hypothesis 3: 'there will be a significant difference between the two groups in physiological anxiety(systolic, diastolic blood pressure and pulse rate) after chest tube removal' was supported(u =55.50, p = 0.01 ; u = 41.50, p = 0.01 ; u = 20.50, p < 0.001, relatively). The findings of this study indicate that hand massage is effective for pain and anxiety related to chest tube removal in patients with lobectomy. Therefore, hand massage is recommended as an effective nursing intervention for relieving pain and anxiety in patients undergoing chest tube removal. Further research is needed to identify the proper duration and timing to achieve the optimal effect of hand massage. A larger subject population is required to apply the current findings to the general population. Further research is also needed to assess the effects of hand massage in other patient subsets. Finally, it would be interesting to see if the effects of hand massaging would be attenuated when performed by a non-medical specialist.

  • PDF

FPGA-based One-Chip Architecture and Design of Real-time Video CODEC with Embedded Blind Watermarking (블라인드 워터마킹을 내장한 실시간 비디오 코덱의 FPGA기반 단일 칩 구조 및 설계)

  • 서영호;김대경;유지상;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1113-1124
    • /
    • 2004
  • In this paper, we proposed a hardware(H/W) structure which can compress and recontruct the input image in real time operation and implemented it into a FPGA platform using VHDL(VHSIC Hardware Description Language). All the image processing element to process both compression and reconstruction in a FPGA were considered each of them was mapped into H/W with the efficient structure for FPGA. We used the DWT(discrete wavelet transform) which transforms the data from spatial domain to the frequency domain, because use considered the motion JPEG2000 as the application. The implemented H/W is separated to both the data path part and the control part. The data path part consisted of the image processing blocks and the data processing blocks. The image processing blocks consisted of the DWT Kernel fur the filtering by DWT, Quantizer/Huffman Encoder, Inverse Adder/Buffer for adding the low frequency coefficient to the high frequency one in the inverse DWT operation, and Huffman Decoder. Also there existed the interface blocks for communicating with the external application environments and the timing blocks for buffering between the internal blocks The global operations of the designed H/W are the image compression and the reconstruction, and it is operated by the unit of a field synchronized with the A/D converter. The implemented H/W used the 69%(16980) LAB(Logic Array Block) and 9%(28352) ESB(Embedded System Block) in the APEX20KC EP20K600CB652-7 FPGA chip of ALTERA, and stably operated in the 70MHz clock frequency. So we verified the real time operation of 60 fields/sec(30 frames/sec).

The Effect on the Lower Limbs Joint as the Landing Height and Floor Pattern (착지 높이와 지면 형태가 하지 관절에 미치는 영향)

  • Kim, Eun-Kyong
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.437-447
    • /
    • 2011
  • In this study, the lower limbs joints were analyzed for features based on the biomechanical characteristics of landing techniques according to height and landing on the ground type (flats and downhill). In order to achieve the objectives of the study, changes were analyzed in detail contents such as the height and form of the first landing on the ground at different angles of joints, torso and legs, torso and legs of the difference in the range of angular motion of the joint, the maximum angular difference between joints, the lower limbs joints difference between the maximum moment and the difference between COM changes. The subjects in this study do not last six months did not experience joint injuries 10 males in 20 aged were tested. Experimental tools to analyze were the recording and video equipment. Samsung's SCH-650A model camera was used six units, and the 2 GRF-based AMTI were used BP400800 model. 6-unit-camera synchronized with LED (photo cell) and Line Lock system were used. the output from the camera and the ground reaction force based on the data to synchronize A/D Syc. box was used. To calculate the coordinates of three-dimensional space, $1m{\times}3m{\times}2m$ (X, Y, Z axis) to the size of the control points attached to the framework of 36 markers were used, and 29 where the body was taken by attaching a marker to the surface. Two kinds of land condition, 40cm and 60cm in height, and ground conditions in the form of two kinds of flat and downhill slopes ($10^{\circ}$) of the landing operation was performed and each subject's 3 mean two-way RM ANOVA in SPSS 18.0 was used and this time, all the significant level was set at a=.05. Consequently, analyzing the landing technique as land form and land on the ground, the changes of external environmental factors, and the lower limbs joints' function in the evaluation were significantly different from the slopes. Landing of the slop plane were more load on the joints than landing of plane. Especially, knee extensor moment compared to the two kinds of landing, slopes plane were approximately two times higher than flat plane, and it was statistical significance. Most of all not so much range of motion and angular velocity of the shock to reduce stress was important. In the further research, front landing as well as various direction of motion of kinetic, kinetic factors and EMG variables on lower limbs joints of the study in terms of injury-prevention-approach is going to be needed.

Experimental Study on Heat Flux Partitioning in Subcooled Nucleate Boiling on Vertical Wall (수직 벽면에서 과냉 핵비등 시 열유속 분배에 관한 실험적 연구)

  • Song, Junkyu;Park, Junseok;Jung, Satbyoul;Kim, Hyungdae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.465-474
    • /
    • 2014
  • To validate the accuracy of the boiling heat flux partitioning model, an experiment was performed to investigate how the wall heat flux is divided into the three heat transfer modes of evaporation, quenching, and single-phase convection during subcooled nucleate boiling on a vertical wall. For the experimental partitioning of the wall heat flux, the wall heat flux and liquid-vapor distributions were simultaneously obtained using synchronized infrared thermometry and the total reflection technique. Boiling experiments of water with subcooling of $10^{\circ}C$ were conducted under atmospheric pressure, and the results obtained at the wall superheat of $12^{\circ}C$ and average heat flux of $283kW/m^2$were analyzed. There was a large difference in the heat flux partitioning results between the experiment and correlation, and the bubble departure diameter and bubble influence factor, which account for a portion of the surrounding superheated liquid layer detached by the departure of a bubble, were found to be important fundamental boiling parameters.