• 제목/요약/키워드: synapse

검색결과 179건 처리시간 0.029초

Spike Train Decoding에 기반한 인공와우 어음처리기의 음성시작점 정보 전달특성 평가 (Performance Evaluation of Speech Onset Representation Characteristic of Cochlear Implants Speech Processor using Spike Train Decoding)

  • 김두희;김진호;김경환
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권5호
    • /
    • pp.694-702
    • /
    • 2007
  • The adaptation effect originating from the chemical synapse between auditory nerve and inner hair cell gives advantage in accurate representation of temporal cues of incoming speech such as speech onset. Thus it is expected that the modification of conventional speech processing strategies of cochlear implant(CI) by incorporating the adaptation effect will result in considerable improvement of speech perception performance such as consonant perception score. Our purpose in this paper was to evaluate our new CI speech processing strategy incorporating the adaptation effect by the observation of auditory nerve responses. By classifying the presence or absence of speech from the auditory nerve responses, i. e. spike trains, we could quantitatively compare speech onset detection performances of conventional and improved strategies. We could verify the effectiveness of the adaptation effect in improving the speech onset representation characteristics.

자율조직을 이용한 임의의 모양을 갖는 영역에서의 회로배치 (Circuit Placement in Arbitrarily-Shaped Region Using Self-Organization)

  • 김성수;경종민
    • 대한전자공학회논문지
    • /
    • 제26권7호
    • /
    • pp.140-145
    • /
    • 1989
  • 이 논문에서는 ASIC 칩의 설계도면에서 발생하는 임의의 모양을 갖는 영역에서의 효과적인 회로배치 방법인 SOAP (self-organization assisted placement) 를 제안한다. 자율조직이란 Kohonen[1]이 제안한 신경회로망의 학습방법으로 가까이 위치하고 있는 신경소자들이 물리적으로 유사한 외부입력에 민감하도록 소자에 연결된 시냅스 (synapse)의 가중치들을 조절하는 것이다. SOAP에서는 회로 블럭을 신경소자에 회로 블럭의 위치 (x, y좌표)를 해당 신경소자에 연결된 2개의 학습입력으로부터의 시냅스의 가중치 쌍으로 대응시킴으로써 임의의 영역에서의 좋은 회로 배치 결과를 얻을 수 있었다. 이 방법은 또한 입체 표면에서의 회로 배치에도 확장될 수 있다.

  • PDF

연산기능을 갖는 새로운 진동성 신경회로의 하드웨어 구현 (Hardware Implementation of a New Oscillatory Neural Circuit with Computational Function)

  • 송한정
    • 한국지능시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.24-29
    • /
    • 2006
  • 연산기능을 갖는 새로운 진동성 신경회로를 설계하여 $0.5{\mu}m$ CMOS 공정으로 칩 제작을 하였다. 제안하는 진동성 신경회로는 흥분성 시냅스를 가진 3개의 신경진동자와 억제성 시냅스를 가진 1개의 신경진동자로 이루어진다. 사용된 진동자는 가변 부성저항과 트랜스콘덕터를 이용하여 설계하였다. 진동자의 입력단으로 사용되는 가변 부성저항은 가우시안 분포의 전류전압 특성을 지니는 범프 회로를 이용하여 구현하였다. 뉴럴 회로의 SPICE 모의실험결과 간단한 연산기능을 확인하였다. 제작된 칩을 ${\pm}$ 2.5 V 의 전원전압 조건에서 측정하였고 이를 모의실험결과와 비교 분석하였다.

Molecular and Cellular Basis of Neurodegeneration in Alzheimer's Disease

  • Jeong, Sangyun
    • Molecules and Cells
    • /
    • 제40권9호
    • /
    • pp.613-620
    • /
    • 2017
  • The most common form of senile dementia is Alzheimer's disease (AD), which is characterized by the extracellular deposition of amyloid ${\beta}-peptide$ ($A{\beta}$) plaques and the intracellular formation of neurofibrillary tangles (NFTs) in the cerebral cortex. Tau abnormalities are commonly observed in many neurodegenerative diseases including AD, Parkinson's disease, and Pick's disease. Interestingly, tau-mediated formation of NFTs in AD brains shows better correlation with cognitive impairment than $A{\beta}$ plaque accumulation; pathological tau alone is sufficient to elicit frontotemporal dementia, but it does not cause AD. A growing amount of evidence suggests that soluble $A{\beta}$ oligomers in concert with hyperphosphorylated tau (pTau) serve as the major pathogenic drivers of neurodegeneration in AD. Increased $A{\beta}$ oligomers trigger neuronal dysfunction and network alternations in learning and memory circuitry prior to clinical onset of AD, leading to cognitive decline. Furthermore, accumulated damage to mitochondria in the course of aging, which is the best-known nongenetic risk factor for AD, may collaborate with soluble $A{\beta}$ and pTau to induce synapse loss and cognitive impairment in AD. In this review, I summarize and discuss the current knowledge of the molecular and cellular biology of AD and also the mechanisms that underlie $A{\beta}-mediated$ neurodegeneration.

Iron Can Accelerate the Conjugation Reaction between Abeta 1-40 Peptide and MDA

  • Park, Yong-Hoon;Jung, Jai-Yun;Son, Il-Hong
    • Molecular & Cellular Toxicology
    • /
    • 제5권2호
    • /
    • pp.108-112
    • /
    • 2009
  • Alzheimer's disease(AD) is a neurodegenerative disorder characterized pathologically by senile plaques, neurofibrillary tangles, and synapse loss. Especially, extracellular beta-amyloid (Abeta) deposition is a major pathological hallmark of Alzheimer's disease (AD). In AD senile plaques, high level of iron and car-bonylated Abeta were detected. Iron has a Lewis acid property which can increase the electrophilicity of carbonyls, which may react catalytically with nucleophiles, such as amines. Hence, this study investigated whether or not iron could promote the carbonylation of amine with malondialdehyde (MDA) in the physiological condition. As the basic study, we examined that iron might promote the conjugation reaction between propylamine, monoamine molecule and MDA in the physiological condition. As the concentration of iron increased, the fluorescence intensity produced from the conjugation reaction increased in a dose-dependent manner. Instead of propylamine, we applied the same reaction condition to Abeta 1-40 peptide, one of major components founded in AD senile plaques for the conjugation reaction. As the result, the fluorescence intensity produced from the conjugation reaction between Abeta 1-40 peptide and MDA showed the similar trend to that of the reaction used with propylamine. This study suggests that iron can accelerate the conjugation reaction of MDA to Abeta 1-40 peptide and play an another important role in deterioration of AD brain.

초파리 단안 신경계의 미세형태학적연구 (Ultrastructure of Ocellar Never System in Drosophila melanogaster)

  • 윤춘식
    • 생명과학회지
    • /
    • 제9권6호
    • /
    • pp.709-714
    • /
    • 1999
  • 성층 초파리의 단안 신경계를 미세형태학적으로 연구 하였다. 단안은 수용기말단, 개재신경 그리고 신경교세포의 3종류로 구성되어 있다. 이들은 전자현미경 사진상에서 각기 다른 밝기를 보여주고 있으므로 쉽게 구분이 가능했다. 신경교세포 내에는 조면소포체가 풍부하게 존재하고, 수용기 말단과 개재신경내에는 신경세포에서 물질의 이동 통로인 미소관이 다수 관찰되었다, 수용기말단과 신경교세포를 연결해주는 capital projection이라는 인상적인 구조물이 관찰된다. 수용기 말단과 개재신경의 시냅스 활성부에 존재하는 리본모양의 구조물과 이들 주위에 모여있는 시냅스 소포들이 자주 관찰되었다. 그리고 단안 시신경이 최종적으로 집중되어 뇌로 신호를 전달해 주는 거대개재신경(giant interneuron)의 횡단 구조를 관찰 할 수 있었다.

  • PDF

Glial Mechanisms of Neuropathic Pain and Emerging Interventions

  • Jo, Daehyun;Chapman, C. Richard;Light, Alan R.
    • The Korean Journal of Pain
    • /
    • 제22권1호
    • /
    • pp.1-15
    • /
    • 2009
  • Neuropathic pain is often refractory to intervention because of the complex etiology and an incomplete understanding of the mechanisms behind this type of pain. Glial cells, specifically microglia and astrocytes, are powerful modulators of pain and new targets of drug development for neuropathic pain. Glial activation could be the driving force behind chronic pain, maintaining the noxious signal transmission even after the original injury has healed. Glia express chemokine, purinergic, toll-like, glutaminergic and other receptors that enable them to respond to neural signals, and they can modulate neuronal synaptic function and neuronal excitability. Nerve injury upregulates multiple receptors in spinal microglia and astrocytes. Microglia influence neuronal communication by producing inflammatory products at the synapse, as do astrocytes because they completely encapsulate synapses and are in close contact with neuronal somas through gap junctions. Glia are the main source of inflammatory mediators in the central nervous system. New therapeutic strategies for neuropathic pain are emerging such as targeting the glial cells, novel pharmacologic approaches and gene therapy. Drugs targeting microglia and astrocytes, cytokine production, and neural structures including dorsal root ganglion are now under study, as is gene therapy. Isoform-specific inhibition will minimize the side effects produced by blocking all glia with a general inhibitor. Enhancing the anti-inflammatory cytokines could prove more beneficial than administering proinflammatory cytokine antagonists that block glial activation systemically. Research on therapeutic gene transfer to the central nervous system is underway, although obstacles prevent immediate clinical application.

Functional Connectivity Map of Retinal Ganglion Cells for Retinal Prosthesis

  • Ye, Jang-Hee;Ryu, Sang-Baek;Kim, Kyung-Hwan;Goo, Yong-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권6호
    • /
    • pp.307-314
    • /
    • 2008
  • Retinal prostheses are being developed to restore vision for the blind with retinal diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Among the many issues for prosthesis development, stimulation encoding strategy is one of the most essential electrophysiological issues. The more we understand the retinal circuitry how it encodes and processes visual information, the greater it could help decide stimulation encoding strategy for retinal prosthesis. Therefore, we examined how retinal ganglion cells (RGCs) in in-vitro retinal preparation act together to encode a visual scene with multielectrode array (MEA). Simultaneous recording of many RGCs with MEA showed that nearby neurons often fired synchronously, with spike delays mostly within 1 ms range. This synchronized firing - narrow correlation - was blocked by gap junction blocker, heptanol, but not by glutamatergic synapse blocker, kynurenic acid. By tracking down all the RGC pairs which showed narrow correlation, we could harvest 40 functional connectivity maps of RGCs which showed the cell cluster firing together. We suggest that finding functional connectivity map would be useful in stimulation encoding strategy for the retinal prosthesis since stimulating the cluster of RGCs would be more efficient than separately stimulating each individual RGC.

Upregulation by KCI Treatment of Eukaryotic Translation Elongation Factor 1A (eEF1A) mRNA in the Dendrites of Cultured Rat Hippocampal Neurons

  • Moon, Il Soo;Cho, Sun-Jung;Lee, HyunSook;Seog, Dae-Hyun;Jung, Yong Wook;Jin, IngNyol;Walikonis, Randall
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.538-544
    • /
    • 2008
  • Activity-dependent local translation in the dendrites of brain neurons plays an important role in the synapse-specific provision of proteins necessary for strengthening synaptic connections. In this study we carried out combined fluorescence in situ hybridization (FISH) and immunocytochemistry (IC) and showed that more than half of the eukaryotic elongation factor 1A (eEF1A) mRNA clusters overlapped with or were immediately adjacent to clusters of PSD-95, a postsynaptic marker, in the dendrites of cultured rat hippocampal neurons. Treatment of the neurons with KCl increased the density of the dendritic eEF1A mRNA clusters more than two-fold. FISH combined with IC revealed that the KCl treatment increased the density of eEF1A mRNA clusters that overlapped with or were immediately adjacent to PSD-95 clusters. These results indicate that KCl treatment increases both the density of eEF1A mRNA clusters and their synaptic association in dendrites of cultured neurons.

근막이완술과 부항의 접목 (Connection of Myofascial Release to Cupping)

  • 백승룡;정형국;배성수
    • The Journal of Korean Physical Therapy
    • /
    • 제8권1호
    • /
    • pp.109-119
    • /
    • 1996
  • Although the physical therapy of both East and West has been based on an identical philosophy, they have had their own therapy with difference in its form and pattern. In general, cupping is used to diagnose and treat viscera by means of acupuncture point, and myofascial release is also used for both diagnosis and orthopedic treatment on the basis of trigger point and myofascial however, when they have a lot of identical facts such as using both mental and physical aspects of human beings for treatment, keeping nervous action balanced, and recovering depressed nervous functions and relieving the pain. In addition. their identical fact includes that they tend to treat patients by using symptoms and reaction shown in their skin, and that both East and West try to consider myofascia as an integrated totality and as a unified body of organic functions with correlations. Among the principles of myofascial release, recently, it has been very identical that stimulus given to the skin results in synapse to sympathetic nerve through dosal horn cell has an effect on viscera, and that cupping is sued for diagnosis and treatment of viscera. It is required, therefore, to continue to carry out studying on this field.

  • PDF