• 제목/요약/키워드: symplectic mechanics

검색결과 8건 처리시간 0.021초

FEYNMAN INTEGRALS, DIFFUSION PROCESSES AND QUANTUM SYMPLECTIC TWO-FORMS

  • Zambrini, Jean-Claude
    • 대한수학회지
    • /
    • 제38권2호
    • /
    • pp.385-408
    • /
    • 2001
  • This is an introduction to a stochastic version of E. Cartan′s symplectic mechanics. A class of time-symmetric("Bernstein") diffusion processes is used to deform stochastically the exterior derivative of the Poincare-Cartan one-form on the extended phase space. The resulting symplectic tow-form is shown to contain the (a.e.) dynamical laws of the diffusions. This can be regarded as a geometrization of Feynman′s path integral approach to quantum theory; when Planck′s constant reduce to zero, we recover Cartan′s mechanics. The underlying strategy is the one of "Euclidean Quantum Mechanics".

  • PDF

The eigensolutions of wave propagation for repetitive structures

  • Zhong, Wanxie;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • 제1권1호
    • /
    • pp.47-60
    • /
    • 1993
  • The eigen-equation of a wave traveling over repetitive structure is derived directly form the stiffness matrix formulation, in a form which can be used for the case of the cross stiffness submatrix $K_{ab}$ being singular. The weighted adjoint symplectic orthonormality relation is proved first. Then the general method of solution is derived, which can be used either to find all the eigensolutions, or to find the main eigensolutions for large scale problems.

Exact analysis of bi-directional functionally graded beams with arbitrary boundary conditions via the symplectic approach

  • Zhao, Li;Zhu, Jun;Wen, Xiao D.
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.101-122
    • /
    • 2016
  • Elasticity solutions for bi-directional functionally graded beams subjected to arbitrary lateral loads are conducted, with emphasis on the end effects. The material is considered macroscopically isotropic, with Young's modulus varying exponentially in both axial and thickness directions, while Poisson's ratio remaining constant. In order to obtain an exact analysis of stress and displacement fields, the symplectic analysis based on Hamiltonian state space approach is employed. The capability of the symplectic framework for exact analysis of bi-directional functionally graded beams has been validated by comparing numerical results with corresponding ones in open literature. Numerical results are provided to demonstrate the influences of the material gradations on localized stress distributions. Thus, the material properties of the bi-directional functionally graded beam can be tailored for the potential practical purpose by choosing suitable graded indices.

ON THE PROPER QUADRATIC FIRST INTEGRALS IN SYMPLECTIC MANIFOLDS

  • Ryu, Shi-Kyu
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제3권1호
    • /
    • pp.83-94
    • /
    • 1996
  • Classical mechanics begins with some variants of Newton's laws. Lagrangian mechanics describes motion of a mechanical system in the configuration space which is a differential manifold defined by holonomic constraints. For a conservative system, the equations of motion are derived from the Lagrangian function on Hamilton's variational principle as a system of the second order differential equations. Thus, for conservative systems, Newtonian mechanics is a particular case of Lagrangian mechanics.(omitted)

  • PDF

Symplectic analysis of functionally graded beams subjected to arbitrary lateral loads

  • Zhao, Li;Gan, Wei Z.
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.27-40
    • /
    • 2015
  • The rational analytical solutions are presented for functionally graded beams subjected to arbitrary tractions on the upper and lower surfaces. The Young's modulus is assumed to vary exponentially along the thickness direction while the Poisson's ratio keeps unaltered. Within the framework of symplectic elasticity, zero eigensolutions along with general eigensolutions are investigated to derive the homogeneous solutions of functionally graded beams with no body force and traction-free lateral surfaces. Zero eigensolutions are proved to compose the basic solutions of the Saint-Venant problem, while general eigensolutions which vary exponentially with the axial coordinate have a significant influence on the local behavior. The complete elasticity solutions presented here include homogeneous solutions and particular solutions which satisfy the loading conditions on the lateral surfaces. Numerical examples are considered and compared with established results, illustrating the effects of material inhomogeneity on the localized stress distributions.

RECENT DEVELOPMENTS IN DIFERENTIAL GEOMETRY AND MATHEMATICAL PHYSICS

  • Flaherty, F.J.
    • 대한수학회보
    • /
    • 제24권1호
    • /
    • pp.31-37
    • /
    • 1987
  • I want to focus on developments in the areas of general relativity and gauge theory. The topics to be considered are the singularity theorms of Hawking and Penrose, the positivity of mass, instantons on the four-dimensional sphere, and the string picture of quantum gravity. I should mention that I will not have time do discuss either classical mechanics or symplectic structures. This is especially unfortunate, because one of the roots of differential geometry is planted firmly in mechanics, Cf. [GS]. The French geometer Elie Cartan first formulated his invariant approach to geometry in a series of papers on affine connections and general relativity, Cf. [C]. Cartan was trying to recast the Newtonian theory of gravity in the same framework as Einstein's theory. From the historical perspective it is significant that Cartan found relativity a convenient framework for his ideas. As about the same time Hermann Weyl in troduced the idea of gauge theory into geometry for purposes much different than those for which it would ultimately prove successful, Cf. [W]. Weyl wanted to unify gravity with electromagnetism and though that a conformal structure would fulfill thel task but Einstein rebutted this approach.

  • PDF

확장 해밀턴 이론에 근거한 선형탄성시스템의 변분동적수치해석법 (A Variational Numerical Method of Linear Elasticity through the Extended Framework of Hamilton's Principle)

  • 김진규
    • 한국전산구조공학회논문집
    • /
    • 제27권1호
    • /
    • pp.37-43
    • /
    • 2014
  • 동역학의 새로운 변분이론인 확장 해밀턴 이론은 수학물리학을 비롯한 공학에 있어 초기치-경계치 문제해석에 광범위하게 적용될수 있는 기반을 제공하는 것으로 본 논문에서는 이 이론을 기반으로 선형탄성 단자유도계에 적용한 새로운 수치해석법을 제안하였다. 곧, 변분이론의 특성을 감안해, 전체 time-step에 대한 수치해를 한번에 산정하는 해석법을 제안하였고, 주요 예제를 통해 이 해석법의 특성을 살펴보았다. 에너지 보존 시스템의 경우(비감쇠 시스템에 외력이 작용치 않는 경우), time-step에 관계없이 에너지와 모멘텀이 보존되는 symplecticity property를 가지고 있음을 확인할 수 있었고, 감쇠 시스템인 경우, time-step이 점점 작아질수록 정확한 해에 빠르게 수렴하는 것을 확인하였다.

혼합 합성 변분이론에 근거한 선형탄성시스템의 이차 시간 유한요소해석법 (Second order Temporal Finite Element Methods in Linear Elasticity through the Mixed Convolved Action Principle)

  • 김진규
    • 한국전산구조공학회논문집
    • /
    • 제27권3호
    • /
    • pp.173-182
    • /
    • 2014
  • 동역학의 새로운 변분이론인 혼합 합성 변분이론은 수학물리학을 비롯한 공학에 있어 초기치-경계치 문제해석에 광범위하게 적용될 수 있는 기반을 제공하는 것으로, 본 논문은 이 이론을 토대로 시간에 대한 이차의 형상함수가 적용된 시간 유한요소해석법을 개발하고 그 해석법의 수치특성 확인을 통해 향후 다양한 동적시스템 해석의 적용에 대한 가능성을 살펴보았다. 이를 위해 가장 기본적인 선형탄성의 단자유도계가 고려되었다. 에너지 보존시스템의 경우(비감쇠 시스템에 외력이 작용치 않는 경우), 제안된 알고리즘 모두는 time-step에 관계없이 안정적이며 수치감쇠가 없이 에너지와 모멘텀이 보존되는 symplecticity property를 가지고 있음을 확인할 수 있었고, 감쇠시스템인 경우, time-step이 점점 작아질수록 정확한 해에 빠르게 수렴하는 것을 확인하였다.