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FEYNMAN INTEGRALS, DIFFUSION PROCESSES
AND QUANTUM SYMPLECTIC TWO-FORMS

JEAN CLAUDE ZAMBRINI

ABSTRACT. This is an introduction to a stochastic version of E.
Cartan’s symplectic mechanics. A class of time-symmetric (“Bern-
stein”) diffusion processes is used to deform stochastically the ex-
terior derivative of the Poincaré—Cartan one-form on the extended
phase space. The resulting symplectic two-form is shown to contain
the (a.e.) dynamical laws of the diffusions. This can be regarded as
a geometrization of Feynman’s path integral approach to guantum
theory; when Planck’s constant reduce to zero, we recover Cartan’s
mechanics. The underlying strategy is the one of “Euclidean Quan-
tum Mechanics”.

1. Introduction

Fifty one years after the publication by R. Feynman of his work on
the space-time approach to non-relativistic quantum mechanics {1] the
evidence is still growing that, one day, such an approach could surpass
the original theory of self-adjoint operators in Hilbert space built by the
founders of quantum theory.

Feynman’s approach has proved to be a powerful heuristic tool in so
many theoretical instances beyond the imagination of its creator in 1948
that little doubt is possible in this respect.

However it is still true, so many years after [1], that a global pic-
ture, mathematically consistent, of Feynman’s space-time approach, is
not available.
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This certainly does not mean that our understanding of the math-
ematical content of Feynman’s ideas is not better than in 1948! Con-
siderable progress have been done in various directions, especially along
the functional analytic line that constitutes the “voie royale” between
regular quantum theory in Hilbert space and the theory of path inte-
grals. The works [2] and [3] ought to establish this beyond doubt.

Consider a guantum Hamiltonian observable of the simple form

(1) H=—§A+V@ﬂ.

Here H is a self adjoint operator in L?(M), where M is a Riemannian
manifold. For most of this article, M will be R". L2(M} denotes the
space of square integrable complex valued quantum states of the system
driven by H. The potential V : M — R is Borel measurable with,
possibly, a smooth time dependence and A denotes Planck’s constant.
Such systems have been under particular investigation, because heuristic
arguments suggest that the classical limit is obtained as & — 0 and this
classical knowledge has been used as the starting point for studying
the quantum system. The classical action functional associated with
equation (1),

Sp: Q= {q(-) e 02([t0,t),M), g(t) = ¢ ﬁxed} R,

t

@) o) — [ L{dtr)9r),7) dr

to

where the Lagrangian L : TM x R — R reduces here to

3) Llga,0) = 1"~ V(e

is of fundamental importance: if 9, (q,t) denotes the state of the cor-
responding quantum system (given that (g, t0) = x(g)), Feynman’s
most influential contribution is the following heuristic integral represen-
tation

(4) V(e t) = fm ((0)) 25810 Dy

where Dw = [[, <., dw(7) is used as a rheasure on the path space (9.
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The expression (4) has been interpreted through time discretisaiion
of the trajectories w, with

t—1
q; = w(je) for e= no’ i=0,1,...,n.

In [4] page 34, the authors note the difficulty that the discretized accel-
eration

(5) q

diverges as ¢ — 0. In Nelson [5], a Lie-Trotter product formula is
introduced to show convergence as a strong limit in L? of the time dis-
cretisations, to give rigorous definition to formula (4}, but the method
does not lead to a well defined integration over path space.

_ G+~ 205+ g5
- b

Considering the problem in imaginary time and replacing 7 by —ir
for 7 > 0, the underlying measure in the resulting counterpart to for-
mula (4) is the Wiener measure, which is well defined. Of course, the
Wiener measure has support on continucus, but not continuously differ-
entiable paths; the acceleration (5) and the Lagrangian (3), for example,
are divergent along such paths.

Taking the ¢ length discretisation scheme, one may compute in one
space dimension

o), (=)0,

where {-)5, denotes the (formal) expectation with respect to the com-
plex weight in formula (4). This leads Feynman in [4] page 177 towards
a heuristic trajectorial description of the quantum picture in which for-
mula (6) may be regarded as a reinterpretation of Heisenberg’s uncer-
tainty principle and where the quantum trajectories have the same reg-
ularity as the typical Brownian paths. Many authors, following con-
siderations by N. Bohr, believe that a trajectorial description cannot
be made rigorous and is incompatible with several basic concepts in
quantum theory. In the article [33], a rigorous trajectorial description
is given in the very restrictive case of stationary states, where V is a
time independent potential and %, is an eigenvector for the operator
H. In that description, the interpretation of the uncertainty principle
simply as analogous to the guadratic variation of a Brownian motion is



388 Jean Claude Zambrini

not enough; it is more connected with the concentration of the nodes,
which are of order O(h) apart as h — 0.

In the Euclidean version of the problem, the Laplacian term may be
interpreted in terms of a Wiener process. When the potential V' is taken
into consideration, a Girsancv theorem argument may be used to con-
struct a Bernstein diffusion. Using the drifts of these diffusions, one may
construct the Euclidean counterparts of the quantities in formulae (5)
and (6). In the Euclidean framework, the underlying measure is well
defined and the problems encountered in real time, associated with lack
of a well defined probability measure, are no longer present.

Our aim here is to describe the starting point of the stochastic sym-
plectic geometry underlying this Euclidean mechanics and to extend it,
wherever it is possible to do so rigorously, to the real time setting. More
precisely, the aim is to generalise Cartan’s theory of integral invari-
ants [6], developing the “Euclidean Quantum Mechanics” programme
initiated in the mid eighties (cf. [9]).

2. Cartan’s classical energy — impulsion tensor and its
bilinear covariant

This section starts with some basic material from classical Hamilton-
ian mechanics according to E. Cartan [6]. Cf. also [32].

By the ‘least action principle’, the extremal points of the action func-
tional 51 satisfy the Euler Lagrange equations

d {OLY,. oL , . .
(7) E(@)(q,q,t)wﬁ(q’q’t)_o’ i=1,...,n,

where 7 is the dimension of M. The momentum (conjugate to ¢*) is
defined by

oL .

Provided these n equations can be solved in ¢,

¢ =4¢'(g,p,t),
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one defines the Hamiltonian H as the Legendre transform of the La-
grangian L,

(9) H(q,p,t) = pid* — L(d,q, 1} ,

and it can be seen that the n differential equations of the second order
equation (7) become the 2n first order equations

(10) q_oH . oH

T M7 Tag

The (¢*,p;) are the canonical conjugate coordinates of the 2n dimen-
sional phase space of the classical dynamical system. When H is time
dependent, it is useful to introduce an extended phase space with coor-
dinates (¢*, p;, 7, E}. Then the Hamilton equations with Hamiltonian

(11) H(Q7p:T)E) ZH(q:paT)_E

coincides on the manifold /I = 0 with equation (10) to which are added
. OH 0H OoH

(12) f=esp =L E=gr =%

The dot now denotes the derivative with respect to another time param-
eter which may be identified with the old one on H = 0. If H is time
independent, the time coordinate is cyclical and its conjugate coordinate
E is a first integral of the dynamical system.

Consider an arbitrary point (¢,p, 7, E) = A in the extended phase
space, parameterised by two parameters o and 8. In Cartan’s discus-
sion of the problem, a ‘differential’ § is used to denote differentiation
with respect to an underlying parameter. Let §; denote % and let &
denote % and consider (81g, 81p, 817,81 E} and (824, dop, do7, 82 F). Con-
sidering the ‘area element’ of the parallelogram spanned by these two
‘displacement’ vectors, one obtains the symplectic or canonical two form

n
(13)  Q61,82) = Y (619 62q" — 610" api) + (517 62E — §E ) .
. i=1

Now consider the starting point A as well as the two varied ones as
initial conditions of three solutions of the extended Hamiltonian sys-
tem (10)-(12), it is easy to compute that, for any initial data ¢,p,7,E,
0iq? 0ip; 0T, 0 B,

d
(14) Z0(81,6) =0
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This was first observed by Lagrange. In other words, for any Hamilton-
ian H, £(8;,d2) is an integral invariant of the motion. The right hand
side of equation (13) is termed a bilinear covariant by E. Cartan in [6].
By integration over the two underlying parameters o and 3, it follows
that any simply connected surface in extended phase space, bounded by
a curve and such that each point is the initial condition of a Hamilton-
ian trajectory has a constant area under the evolution. The introduction
of (13) is motivated by the study of

(15) ws = pdq — H ot |

which is called the energy — impulsion tensor in [6].

A certain amount of care has to be taken with the notation when the
differential with respect to time is constdered. This will be especially
the case in our stochastic generalization.

When the space and time variables are regarded as functions of a
parameter, Cartan shows that

¢ d2q av
_ )
(16) 45 = [wfs]m + ./to (——d1_2 + —aq ) dq dT .

In particular, the integration of ws along solutions of the Euler Lagrange
equations, shows that [ w;s is time invariant; it is an integral invariant of
the equations of motion. Conversely, Cartan shows that the only system
of 0.D.E.s admitting [ ws as an integral invariant is precisely (10)—(12).
This amounts to showing that €(d, §) = 0 for any dq, dp, &t, where d de-
notes the differential along the trajectory, & being an arbitrary variation.

As equation (16) shows, ws is closely related to Hamilton’s action
functional (2). Cartan observes that if the following identity holds along
trajectories for the displacement in the state space
(17) dgt = ¢t o1,

then the energy — impulsion tensor ws may be identified with the inte-
grand of the action functional since

t _ t
(18) fpidq’—HdT=f Ldr.
t

0 to
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(comparing with (9)). Notice that in (17) Cartan does not really treat
dq, &7 as differentials.

3. A class of time symmetric diffusion processes

Let (2, (Pt)i>ty; (Pz)zenm) denote the probability space of the canon-
ical realization of the Wiener process wy : t > tg with values in M = R"™.
Here Q2 denotes C(Ry, M), P; the increasing filtration representing the
past of the process and P, its law when it starts from x € M at time %p.
Assuming for simplicity the (Borel measurable) potential V : M — R of
equation (1) is time independent, one can decompose it into its positive
and negative parts V' = max(V,0} and V'~ = max(—V,0) and assume
that
(19)
t1

V1 (w,;)dr < +c0

to

E, =1 a.e.,

1
exp{ V= (wr) d'r}] <ooand P,
t

0

where FE, denotes the expectation with respect to P,. Under these
conditions, it is known that the integral kernel & of the heat equation
on L?(M) associated with the Hamiltonian H, namely

(20) A(z,t—to, y) = kernel(exp{—(t —hto) H}) (z,¥), =z, yeM,

is jointly continuous in all its variables and strictly positive. Using this
and a given pair of positive measurable functions on M, denoted by #;,
and 7, which are analytic vectors for H in the interval [tg,¢1] (this
can be seen in [9]), one shows the existence of an M valued diffusion
z¢ : tp < ¢ < t;, whose finite dimensional distributions are of the form

(21)

P(dfla Tl -y dgny Tn)
= [np, (x) bz, 1 —t0, &1) - - - W(€ns b1 — T, ) 1y () dady- -~ dén dy

for tg <71 < ... <7, < t. This process is a Bernstein diffusion z,
t € [tg,t1], which is now entirely determined from the data of a pair of
probability densities pg and p; at the extremities of the time interval.
Indeed, these data allow us to determine the pair {n; ,n; } needed for
equation (21) via the system

i, () th(m,n —t0,9) 7 () dy = pol)

(22)
Tt (¥) _/M Ny () (2, 11 — to,y) dz = p1(y)



392 Jean Claude Zambrini

which is known (under our hypothesis on h) to have a unique positive,
but not necessarily integrable, solution {n;,, 7, } if po and p; are strictly
positive probability densities [10]. This is the sketch of the original
construction of those diffusions, their history is outlined in [9]. Others,
more general and inspired by Csiszir and Féllmer have been developed
since then. See [11] for a very recent survey.

What makes Bernstein diffusions special is that, although they are
generally (i.e. for an arbitrary choice of boundary probabilities, pg and p;
in equation (22)) inhomogeneous Markov processes, they are neverthe-
less perfectly time symmetric on [¢y, ¢1] by construction, in a sense which
is now made clear. It follows clearly from the form of the Hamiltonian (1)
that z should solve some P; - Itd stochastic differential equation [12]

(23) dz = B(t, 2,) dt + B duw,

In the construction, one interprets the drift vector field B on M as the
mean velocity

(24) B(t,z) = Dz = h_géE[ft’“E—_zi | Pt] :

where E[-|7P;] denotes the conditional expectation given P,. Now, us-
ing (21), one verifies easily that, when the densities are smooth,

(25) B(q,t) = —V5(q,t)
where the scalar field S is defined by
(26) 5(q,t) = —h logn(g,t)

and 7 solves the heat equation for (1) with {positive) final condition

@7 { h% = Hp t € [to, 1]
(g, t1) = nt,(q) -

It is shown in [11] that such a construction requires naturally the fol-
lowing finite kinetic energy condition

(28) E[[ D 2 dt] <o

4]

The time reversed process is defined by 2 = 2, (;, —y) and corresponds
to exchanging the probability densities pg and p; at the extremities of
[to, 1). The drift associated by equation (24), which is given by

(29) Dét = —D* zt0+(tl—t)! t(] S t g t]_ )
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is measurable with respect to the decreasing filtration Fi= Preot(1—0)
representing the future of z;. Here D, is defined as

(30) D,z = limE[zT—_zT_—f |’f.,] .
ell €

This method was used by Nelson [13] in another context and permits
one to attribute two different drifts to the same time symmetric diffusion
process 2, t € [to,1]. By analogy with equation (24) and (27}, one may
verify that this backward drift is given by

where S, is defined by S.(¢,t) = —hlogn*(g,t) and 1" solves the heat
equation adjoint to (27) with positive initial condition 7,

(32} ot

a *k
{—h” — Hp* th<t<th
n*{(g,t0) = i, -

The pair of heat equations (32) and (27) may be regarded as the ‘imag-
inary time’ counterparts of Schrodinger’s equation and its complex con-
jugate [9].

The class of Bernstein processes arises naturally in the context of
a probabilistic treatment of the imaginary time analogue of Feynman'’s
approach. From equations (24), (25) and (27), one verifies that, when
H is of the form (1),

(33) DDz = DB =VV(z,t) ae. .

Unfortunately, as pointed out earlier, the ‘acceleration’ along the path in
equation (5) is divergent, even in imaginary time and one has to consider
instead the ‘smoothed’ quantity given in equation (33). It is important to
note the sign in front of the VV. Unlike classical mechanics, there is no
negative sign (this results from 7 — —ir mentioned in the introduction},
showing that the set up is not exactly analogous to classical mechanics.
For a way to recover the correct sign cf. a modification to the Bernstein
process developed in [33].

Starting from equations (24) and (25), as well as (31), one computes
using Pr{z € dg¢} = n*n{q,t)dq (as in [9]) that

(34) E [zt Dozy — z th] =h,
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which is the imaginary time analogue of equation (6). Inspection of
equation {6) will show the role played by the reversibility of the Bernstein
diffusion.

There are serious differences between the limit as i — 0 of the Bern-
stein diffusion and classical mechanics, even after making the necessary
allowances for the change of sign noted in equation (34). This is con-
nected with the onset of downward jumps in the associated Burgers’
equation {i.e. the equation solved by the drift B defined in (25)—(26)) as
ki — 0 and, in general, where these downward jumps occur, it is not true
that 2(% := limp_q 2™ satisfies %%é = VV(z,t). The quantity % does
not, as one might naively expect, measure the deviation from classical
mechanics in the benign way that equation {34) might suggest. Some
striking examples, showing the impact on the dynamics of the onset of
downward jumps in the Burgers' equation are given in the first section
of {33].

A rigérous counterpart has been developed in imaginary time for most
of the non rigorous considerations made by Feynman in real time. Cf.
[14].

4. Stochastic exterior derivative of one forms and stochastic
calculus of variation

The classical calculus of variations finds critical points of functionals
associated with the classical Lagrangian mechanics; for example, the
derivation of equation (7) from equation (2}, for classical trajectories.
The basis of a variational approach to deal with Euclidean Quantum
Mechanics was introduced in [14] and [16].

Let us show that the classical connection (cf. for ex. [15]) between the
critical point of action functionals linear in the velocity, i.e. one form w
on M, and the exterior derivative of w is preserved in this framework.

DEFINITION 1 ([16]). For F a “regular” functional defined on (Q, pu™),
where p* is the Wiener measure with parameter b and p any positive
Radon-Nikodym density s.t. pu” is the law of a process z; of the form
(23) in the domain of F', one says that z; is critical point of F when
(VF,¢); = 0 as., V¢ : & — H. Here H is the Cameron—Martin sub-
space of the path space Q, V the gradient defined in Malliavin caleulus
[17] and (-, -); the scalar product in 'H.
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PROPOSITION 1. Let A € C}R™ — R"). A R"-valued process of
the form (23) with z, = = and s.t. E[sup,, .7 |2|*] < oo is critical
point of the functional

T
(35) Eys / Ai(z) o dst
1

Q

where o denotes Stratonovich symmetric integral [12] if and only if

(36) (V,;A; — ViA) B' + g(vjvak ~AA) =0 (as)

along z, to < t < T (where Einstein summation convention has been
used).

Proof. Using the relation between Stratonovich and forward Itd’s
integral and the definition (24), the functional {35) can be expressed as

T

(37) Eou, [ [ T(Ai(zt)sz + gvuk) dt] EEI[ L(th,zt)dt} .

0 ta

If F' denotes this functional, Ité’s calculus and an integratio by parts
with respect to the time parameter gives
(38)

T
(VE ) = Bra [ | (5e#+ 552 7%) dt]

T 7oL oL

]

= Lty

where we have assumed %(DZT, zr) = 0 for simplicity (this can always
be implemented with an additional transversality condition). It follows
that

oL oL

— —D—=0 as. .

8z 9Dz 5

The operator D introduced in (24) may be extended to any smooth
vector field depending on ¢ and z;. Itd’s formula for a smooth test
function f: Ry x R* — R" gives

(39)

d ; h
4l = — E - — B
(40) D ETi BV, + 5 A
Using this, (39) coincides with (36) for the Lagrangian of (37). O

The first term of (36) arises in classical mechanics. It is known (cf.
for example [8]), that the inclusion of a magnetic field with potential
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vector A in a Lagrangian system such as (3), defined by L = L + {4, q),
transforms the original Euler Lagrange equation (7) into

(41) Pi=—ViV + (VA — Vid)) ¢ .

The second term of (36) is not a classical term and arises from the
‘quadratic variation’ of the noise in the stochastic calculus. Denoting ¢
by dz (for “variation of 2”), one can introduce the concept of a stochastic
“exterior derivative” d of the 1-form A, o dz* through

0 = Euy [ ft Td(A,-odzg) (B,éz)]

0

T
(42) = ZEw,to [/ (VjA; — V;A;) 6z B; dt
ij to

+g (VJVkAk — AAJ) (52‘j dt]

for any variation dz along z. This expression can be written in a way
which relates it more closely to the classical setting; Cartan’s bilinear
covariant of the classical 1- form (A4, dg) given in [6]:

T

k

(43) Egy, |;/t (V;A; — ViAj) 6z dz + B} (VijAk — AAj) 0z; dt:| ;
0

The exterior derivative of an exact form w = d5(z;), where S is a regular

scalar field, must be zero. It follows from the definition that this is the

case only if

(44) V; VS —AV;S =0.

This is clearly the case when M = R”. For a Riemannian manifold, some
care should be taken, because the Laplace—Beltrami operator does not
commute anymore with the gradient. The Laplace—de Rham operator
ApR does commute and therefore the Laplacian of (40) ought to be
understood as Apg when defining stochastic parallel displacement of
vectors along Brownian paths in problems related to Euclidean Quantum
Mechanics [18] and [19].

ProrosiTIiON 2. Under the same hypotheses as for Proposition 1, a
critical point of the functional (35) solves, almost everywhere,
.k
(45) (ViAi = Vidj) B, — 5 (V;VFAL —A4))=0.

where B, is the backward drift (30).
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Proof. The proof is similar to that of proposition 1, except that a
backward formulation of the problem is used (cf. [20]). The associated
Lagrangian becomes

L*(D*Zt, Zt) = Az D*Z; - gvak .

The difference is the change of sign in the correction term. An ‘Euler
Lagrange’ equation may be computed in much the same way as before;

0L,  OL. _

D. dD.z Oz

0,
resulting in equation {44). O

To provide a formulation as close to the classical as possible, the
average drift is introduced

1. .
(46) vt = 3 (B + B") .
Its behaviour under time reversal is the same as the one of a classical
velocity, in contrast with the one of the drifts B and B. taken separarely.

DEFINITION 2. The symmetric stochastic exterior derivative of the
one form (A(z) o dz:) on the vector fields v and X is given by

(47) d{A;0dz))(v, X) = (V,;A; — Vi A v X,

As a matter of fact, it is easier to understand the appearance of the
average drift v by observing that we could reinterpret the first term of
the r.h.s. of (43) as involving a Stratonovich differential odz® instead
of the (forward) Ité’s one -dz'. Then using again the general relation
yodz=y-dz+ 3dy-dz (cf. [12, p.100]) one verifies that

(48) J(V;iAi = ViA5) 627 0 dz; ‘ .
= [(V; A4 — ViA;} 620 dzt + B (V;VIA; — AAj) 627 dr

so that the quantum deformation term in our initial definition (42) of the

exterior derivative of A; o d2* is precisely due to the difference between

the It6 (forward) and Stratonovich integrals. Of course, the same would

be true for the backward Ité’s definition underlying (45). Taking the

expectation of the Lh.s of (48), using the symmetric time discretization
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of Stratonovich (cf. 120, 13]) and the continuity of the paths, we get
1 _ ,
AN f(vin — ViA;) 827 3 (Dz: + D.z5)dr
=Lto /(vin - viAj)(szj vtdr

whose integrand coincides with our definition (47).
We mention without proof the following elementary extension of Propo-
sition 1.

ProPOSITION 3. Let A € C3?(R® x R — R") and h ¢ C*%(R" x
R — R). A R"-valued process z, of the form (23), with %, = z is a
critical point of the functional

T
(49) Eppy | Ai(zr,7)0ddt + h(z,7) dr

to
in the same sense as in Proposition 1 if and only if
R A
(50) (V;A;—V;A;) Bz+§ (VijAk—AAj)-E- (th— %—TJ) =0 as

along z;. The quantum deformation term can be eliminated from (50)
by the same symmetrization procedure as before.

Let us apply this to the class of diffusion processes introduced in §3.
If B denotes, as before, the drift of Bernstein diffusion, we say that

Y= {(t, q, B(q,t)}| (t,¢) in a simply connected domain of R x R”}

is a stochastic Lagrange set when the following stochastic version of the
Poincaré—cartan one-form

(51} w= B(z,t)odz + e(z,t)dt

is exact. Notice that only the (g,t) variables are involved here in contrast
with the usual classical definition in the phase space. So (51) should be
interpreted as the stochastic counterpart of p(g,t) dg — H(q,p(q,t),t) dt,
i.e. the integrand of the action functional (18) after substitution to the
momentum p as a function of ¢ and ¢. The scalar function € in (51} is
defined by such property.

PROPOSITION 4. ¥ is a stochastic Lagrange set when
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a) In case B is continuous, iff there is a scalar field S(g,t) of C*!
class s.t.

(52) B(Qa t) = _VS(CL t) ’

(53) 3—S+%|VS|2+§AS+V:6—S

The scalar field S is given explicitly by (26), and ¢ is called the
energy random variable of the system.

b) In case B is of C1! class, iff in a simply connected domain

(54) ViB' - V,;B* =0,
a9 .
B =V.c.

(55) 3 Vi€

Notice that at the classical limit A = 0 of smooth trajectories, and
except for a few changes of signs of Euclidean origin, this is a classical
result (cf. [22]), justifying our terminology.

Proof.

a) w of (51) is exact so there is a scalar § s.t. w = —dS. ;From this
follow (52) and (53). The first relation was already known (25).
The second follows from (25) and the fact that 5 solves the heat
equation (27).

b) When B is of C! class, dw = —ddS = 0 which is, by (50), equiva-
lent (in a simply connected domain and for A = B, h =€) to (54)
and (55). O

The equation (53) is called the Hamilton-Jacobi-Bellman equation [23]
and became increasingly important, in recent years, both under the ef-
fects of its relevance to stochastic control theory and as a motivation for
the development of the method of viscosity in nonlinear PDE [24]. In
our perspective, it is the proper quantum deformation of the classical
Hamilton—Jacobi equation.

Let us conclude this section by a basic property of the energy random
variable, needed afterwards
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COROLLARY 1. Along any Bernstein diffusion z

(56) De(z,t) = %—Z(zt,t) a.e.

In particular, if the system is conservative (i.e. the scalar potential V'
is not explicitly time dependent) then the energy random variable is a
‘P;-martingale.

Proof. By Proposition 4, S(g,t)=—Fhlogn(q,t) and (g, t):—%—f(q,t).
The conclusion follows from the definition {40) of D and the form of the
Hamiltonian (1).

When V is time independent we have De{z:,t) = 0 i.e. {cf. (24))

(57) E[G(ZH—At; t+ At) | Pt] = E(Zt,t) YAt >0 ,

which (besides the obvious integrability requirement e(z;,t) € L!) is
precisely the definition of a martingale. Cf. [25]. O

5. Stochastic canonical two-form

It is clear from §4 that our probabilistic generalization of a point in
the classical extended phase space (cf. §2) is now

(58) A= (zt, Bz, t), t, e(zt,t))

for the class of Bernstein diffusions defined in §3, where B and ¢ denote,
respectively, the drift and energy random variables. At time t5 these
data provide, in particular, the initial conditions of the equations of
motion, in our regularized Hamiltonian form, ie. by (24), (33), and
(56),

oV

(59) Dz =B, DB=VV, De=— ae.

To build twe variations A; + 614 and A + §A such that these two
neighbouring random variables could define the initial conditions of two
new solutions of the same equations (59) requires some care. This can
be interpreted as the result of some change of space-time variables close
to the identity

(60) { Q=g+aX(qt)+ofa)

T=t+aT(g,t)+ole)
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where « € R, X € C31(R* xR — R?), T ¢ C*!(R* x R — R)
together with the effect of (60) on the drift and energy variables B, e.
But, in terms of It6 calculus, the change of time parameter evaluated on
a diffusion like (23) is, in itself, alarming: it result into a new diffusion
whose law is not absolutely continuous with respect to the one of z.
Notice that this is true even if T depends only on £ and not on the space
variable ¢. As a matter of fact, if T = T'(g = z,t) such transformation is
meaningless in probability theory. The right perspective is to interpret
(60} as acting on a space-time process (z;,t) (i.e. the counterpart of
the classical extended configuration space) and to impose that after the
transformation (60}, the same heat equation (27) is solved in the new
variables (@, 7). Then one shows

PROPOSITION 5 ([26, 27]). Those conditions are satisfied by each
solution (X, T) of the system of PDE:

(61)
ar _ox' , oT ax*
i 28_(;3' (no summation}, —qu = (, ral 0,
aT v v X+ axJ
?‘ kel . . — 1 . r -
8 V+X 61+T ot 0’ BqJ rra af:h 0 B ’ ’n’%#'?

where V is assumed to be at least of CU! class.

Those linear equations are a special case of the defining equations
of the (Lie) symmetry group of the heat equation (27). They form an
over-determined system and, therefore, have solutions.

Now we want to study the stochastic counterpart of the classical
symplectic two-form (13). VVhat plays the roles of (§;¢,8;7), 7 = 1,2,
there is clearly (X;,T}) = (%2 Fo a0 g; e o)» given our definition (60).
We need to make sense of the associated (6;B,d;¢), j = 1,2.

LEmMMA 1. When the equations (61) hold, the variations of the drift
and energy random variables are given by
X d1;

dj€ = —e—2,  i=1,2, i,k=1,..,n.

5.B) = B, 2N
(6;B)' = By dt’

6"“’

Proof. Consider the effect of the change of space-time variables (60)
in the SDE (23). Up to the first order in the parameter « it is, using
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Itd’s theorem,
(62)

dQ, = (B+a(DX _Bi'"))(QT,r)err (1+a(X - —1)) Vh dW,

where 1 is a n x n identity matrix, X, denotes the matrix (%), i, k=

1,...,n, and W; is a R"-valued P, Wiener process. By the first and the
last equations (61} these diffusions are absolutely continuous with re-
spect to the oné solving (23). Together with the third defining equation,
this allows to compute that the variation of the drift DX — BT = —BX,
as claimed.

The second claim follows in the same way. O

DerFINITION 3. Let (X;,T;) = (8;2,605t), j = 1,2, be a couple of
solutions of the defining equations (61) and (§;B,d;¢) the associated
variations of drift and energy defined in Lemma 1. We call stochastic
canonical or symplectic two-form the expression
(63)

E[(élBl (5in — (5122' 5231) — (51t 526 — 51652t } E[Mt(Zg)] = (51, 52)

where the suffix n) in Q,, is a reminder that the left hand side is computed
in term of a (positive) solution n of the heat equation (27).

THEOREM 1. The stochastic canonical two-form (63) of the system
driven by the heat equation (27} is an invariant of the motion in the
sense that DM(z) =0 a.s..

Proof. Using Lemma 1, the integrand of (63) can be written

oXi  oxi

Mt = _Bk(Xi a_qk — 6_qué> +E(T1T2 *Tng) )

By 1t6’s calculus, some laborious calculations using the fact that (X, 73),
Jj = 1,2, both solve the defining equations (61), and the properties of
the basic Bernstein diffusion z;, show that M;(z) is a P;-martingale.
O

The first application by E. Cartan of his concept of symplectic two-
form is the case where the variation 4; in (13} is arbitrary and d; is the
ordinary differential (denoted by d) along the trajectories. The fact that
Q{é,d) = 0 for any variation dq, ép and &t provides a new derivation of
the Hamiltonian equations of motion (10} and (12) (cf. [6]).



Feynman integrals, diffusion processes and quantum symplectic two-forms 403

The same is true in our probabilistic generalization, with a necessary
proviso: if we need to interpret one of the variations in (63) as a sto-
chastic differential along the continuous paths ¢ — 2z of the diffusion,
we have to specify which differential. The remark after (48) suggests the
following:

PROPOSITION 6. Consider the stochastic symplectic two-form

(64) E | (6z'0odB; —6B;odz'} + (dtde — dedt) = Q,(d, d)

iy
where o and d refer to the Stratonovich integral. This integral vanishes
Y&z, 0B, 6t admissible (i.e. VX, 6B and T as defined before) if the
regularized Hamiltonian equations (59) holds a.e..

REMARK. Since 6t = T is of bounded variation process by con-
struction (cf. (61)) it is not necessary to specify the kind of stochastic
differentials used in the second term of the Lh.s. of (64).

Proof. Let us do this computation in R? for simplicity. By Lemma 1
and (52)—(53)
) 1 5 h .
de=—eT = §|B| +§VB T-TV.
Using the defining equations (61} this reduces to

55—BJB+§VB VX 4+ XVV+TV.

According to 1td’s rule F 0 dG = F dG + 1 dF dG

5zodB=XdB+gVB VX dt
and
6Bodz=éde—%VBVth.

The left hand side of (64) can, therefore, be written as

t1
(65) £ [ X(dB-VVdt)+4B(~dz+Badt)~+ T(de = (?9_1/ dt)
to

which is zeroV X, T and § B admissible only if the Hamiltonian equations
(59) hold a.e.. 01
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6. Further directions of investigation and prospects

Let us come back on Cartan’s observation {17) on the relation be-
tween the energy-impulsion tensor ws and the integrand of the action
functional Sp.

Given (61}, a probabilistic counterpart for us is to impose that, at any
time,

(66) X'=B'T, i=1,.,n,

where B denotes, as before, the drift vector field of a Bernstein diffusion.
Using Proposition 5, one verifies easily that (66) is possible only if
B(q,t) is of the form
; 1T ; o
67 B'(g,t) = - =) ¢" + ==
(67) (a,%) Uq+T®
where « is a constant vector in R™ and T solves T'(t) = 0.
Going further with (40), we see that

(68) DB =0 .

In other words, by (33), we are dealing exclusively with solutions of the
free (V = 0) equations of motion.

(67) is the typical drift of a Gaussian Bernstein diffusion. Such pro-
cesses, for Hamiltonian H of the form (1) have been studied of their
own (cf. [28, 29, 30]). They are known to carry a symplectic structure.
Notice, however, that the stochastic symplectic geometry sketched here
is much more general: it is not limited a priori to Gaussian probability
Imeasures.

Regarding the concept of dynamical laws, in this framework, let us
point out that, in spite of the P,-stochastic differential equation (or of its
counterpart with respect to the decreasing filtration F;) it is the second
order equation (33) which capture their essence. In consequence, we
define the local flow of (canonical) transformations associated with (33),
for example, by

¢1_ : RQn - RQn

(69) MY a

M} Dz,
where ¢ = ¢(M}, M?,t), with M}, M? two P,-martingales playing the
role of inijtial conditions of (33).
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For example, consider n =1 and V(g) = “’72 ¢%, w = cste. Then
(70)

z \ _ (M}, ME )\ _ [ coshwt sinhwt M}

( Dz, ]~ \ go(M}, MEE) ) ( sinhwt coshwt ) ME )
Notice that here the solutions are analytic V¢, an exceptional situation.
The existence of the martingales M]', M? for simple systems with linear
flows like this one is assured by the Theorem of Noether proved in [27].

The analytical and geometrical properties of such flows (with general
scalar potentials V') should be studied carefully.

The defining relations (61) of the symmetry group allow us to charac-
terize the transformations taking positive solutions of the heat equations
(27) (with their associated Bernstein diffusion) into other positive solu-
tions of the same equation. This is the probabilistic counterpart of a
very special class of canonical transformation in Hamiltonian mechan-
ics: those whose scalar potential V is not changed. Another special
canonical transformation is, of course, the time evolution. The proper
geometrical definition of a canonical transformation is one, from the
{(extended} phase space into itself, preserving the symplectic two-form
[8].

By Theorem 1 we know that the stochastic canonical two-form {2y, is
preserved under the dynamics. This should be extended to the largest
possible class of canonical transformations between Bernstein diffusions.

The main missing Theorem in such a stochastic symplectic geometry
is the relevant Stokes Theorem [32]. It is needed to turn the local state-
ment of Theorem 1, involving only canonical transformations close to
the identity, to a global one. The right hand side of (63) should define
the exterior derivative of the stochastic one-form

(71) ws, = Boiz+ et

generalizing Cartan’s energy-impulsion tensor (15). In the classical case,
the integral of ws over a closed loop in the extended phase space coincides
with a double integral of dws [6]. This one is a relative integral invariant
in Cartan’s sense and we should understand its probabilistic generaliza-
tion. - This involves clearly integration over the whole symmetry group,
not only over the Lie algebra used implicitly here.

What are, finally, the relations between the indirect interpretation of
Feynman’s ideas advocated here, this “Euclidean Quantum Mechanics”,
and regular quantum theory in Hilbert space?

They are very close. In fact, our probabilistic analogy is close encugh
to allow to guess new Theorems in quantum theory. In [31] it is shown
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that our approach of symmetries in §5 (in a slightly more general version)
translates into a new Theorem of regular quantum theory in Hilbert
space, always richer in its predictions than the familiar Theorems in
L2(M).

The general aim of Euclidean Quantum Mechanics is therefore the
same as Feynman’s one, but using the advances of stochastic analysis
since the fifties: to draw systematically the advantages of an approach
to quantum theory where the concept of trajectories in space-time is
preserved.
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