• Title/Summary/Keyword: symmetric points

Search Result 120, Processing Time 0.021 seconds

3D GEOMETRY EFFECTS ANALYSIS ON PROPAGATION OF PRESSURE WAVE GENERATED BY HIGH-SPEED TRAIN TRAVELING IN A TUNNEL USING CFD (3차원 형상을 고려한 고속철도에 의한 터널내 압력파 전파의 CFD 해석)

  • Shin, D.Y.;Lee, S.G.;Oh, H.J.;Kim, H.G.;Yoon, S.H.;Kim, C.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.49-55
    • /
    • 2012
  • Research has importance in proposing the design of a tunnel with a vertical vent to secure passengers in a comfortable environment and safe against pressure. Using several analysis methods, the magnitude of the pressure induced by the vertical vent in the tunnel can be analyzed. In addition to the 3-dimensional method, the 2-dimensional method and the 2-dimensional axis-symmetric method are also used to analyze the strong and weak points of each so that the optimum analysis method can be obtained. As a result, it appears that the 2-dimensional axis-symmetric method is the most suitable in analyzing tunnel pressure consider to accuracy and time effective aspect. Also, the 3-dimensional method is disadvantageous in that it takes longer in calculating results, but is more effective in predicting phenomena around the vertical vent in the tunnel.

Analysis of Laminated Composite Skew Plates with Uniform Distributed Load by Finite Difference Method (유한차분법에 의한 등분포 상재하중하 적층 복합재 경사판 해석)

  • Park, Weon Tae;Choi, Jae Jin;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.291-302
    • /
    • 2000
  • In recent years the development of high modulus, high strength and low density boron and graphite fibers bonded together has brought renewed interestes in structural elements. When a plate with arbitrarily oriented layers and clamped boundary conditions is subjected to uniform loading, it is difficult to analyze and apply, compared with isotropic and orthotropic cases. Therefore the numerical methods, such as finite difference method or finite element method, should be emloyed to analyse such problems. In this study the finite difference technique is used to formulate the bending analysis of symmetric composite laminated skew plates. When this technique is used to solve the problem, it is desirable to reduce the order of the derivatives in order to minimize the number of the pivotal points involved in each equation. The 4th order partial differential equations of laminated skew plates are converted to an equivalent three of 2nd order partial differential equations with three dependant variables.

  • PDF

Analysis of Camera Rotation Using Three Symmetric Motion Vectors in Video Sequence (동영상에서의 세 대칭적 움직임벡터를 이용한 카메라 회전각 분석)

  • 문성헌;박영민;윤영우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.7-14
    • /
    • 2002
  • This paper proposes a camera motion estimation technique using special relations of motion vectors of geometrically symmetrical triple points of two consecutive views of single camera. The proposed technique uses camera-induced motion vectors and their relations other than feature points and epioplar constraints. As contrast to the time consuming iterations or numerical methods in the calculation of E-matrix or F-matrix induced by epipolar constraints, the proposed technique calculates camera motion parameters such as panning, tilting, rolling, and zooming at once by applying the proposed linear equation sets to the motion vectors. And by devised background discriminants, it effectively reflects only the background region into the calculation of motion parameters, thus making the calculation more accurate and fast enough to accommodate MPEG-4 requirements. Experimental results on various types of sequences show the validity and the broad applicability of the proposed technique.

  • PDF

A Near-tip Grid Refinement for the Effective and Reliable Crack Analysis by Natural Element Method (효율적이고 신뢰성있는 자연요소 균열해석을 위한 균열선단 그리드 세분화기법)

  • Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.183-190
    • /
    • 2019
  • This paper introduces a near-tip grid refinement and explores its usefulness in the crack analysis by the natural element method(NEM). As a sort of local h-refinement in finite element method(FEM), a NEM grid is locally refined around the crack tip showing high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane strain rectangular plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for comparison. Unlike the uniform grid, the refined grid provides near-tip stress distributions similar to the analytic solutions and the fine grid. In addition, the refined grid shows higher convergence than the uniform grid, the global relative error to the total number of grid points.

Quantification of three-dimensional facial asymmetry for diagnosis and postoperative evaluation of orthognathic surgery

  • Cao, Hua-Lian;Kang, Moon-Ho;Lee, Jin-Yong;Park, Won-Jong;Choung, Han-Wool;Choung, Pill-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.17.1-17.11
    • /
    • 2020
  • Background: To evaluate the facial asymmetry, three-dimensional computed tomography (3D-CT) has been used widely. This study proposed a method to quantify facial asymmetry based on 3D-CT. Methods: The normal standard group consisted of twenty-five male subjects who had a balanced face and normal occlusion. Five anatomical landmarks were selected as reference points and ten anatomical landmarks were selected as measurement points to evaluate facial asymmetry. The formula of facial asymmetry index was designed by using the distances between the landmarks. The index value on a specific landmark indicated zero when the landmarks were located on the three-dimensional symmetric position. As the asymmetry of landmarks increased, the value of facial asymmetry index increased. For ten anatomical landmarks, the mean value of facial asymmetry index on each landmark was obtained in the normal standard group. Facial asymmetry index was applied to the patients who had undergone orthognathic surgery. Preoperative facial asymmetry and postoperative improvement were evaluated. Results: The reference facial asymmetry index on each landmark in the normal standard group was from 1.77 to 3.38. A polygonal chart was drawn to visualize the degree of asymmetry. In three patients who had undergone orthognathic surgery, it was checked that the method of facial asymmetry index showed the preoperative facial asymmetry and the postoperative improvement well. Conclusions: The current new facial asymmetry index could efficiently quantify the degree of facial asymmetry from 3D-CT. This method could be used as an evaluation standard for facial asymmetry analysis.

Cure Monitoring of Composite Laminates Using Fiber Optic Sensors (광섬유 센서를 이용한 복합재료 적층판의 성형 모니터링)

  • Gang, Hyeon-Gyu;Gang, Dong-Hun;Park, Hyeong-Jun;Hong, Chang-Seon;Kim, Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.59-66
    • /
    • 2002
  • In this paper, we present the simulataneous monitoring of the strain and temperature during cures f various composite laminates using fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPI) hybrid sensors. Three types of graphite/epoxy composite were used : a undirectional laminate, a symmetric cross-ply laminate, and a fabric laminate. Two FBG/EFPI hybrid sensors were embedded in each laminate at different directions and different locations. We performed the real time monitoring of fabrication strains and temperatures at two points within the composite laminates during cure process in an autoclave. Throuhg these experiments, FBG/EFPI sensors proved to be an efficient choice for smart cure monitoring of composite structures.

Local Field Distribution in YNi$_2B_2C$ Superconductor (YNi$_2B_2C$의 초전도 상태에서 국소자기장의 분포)

  • Kim, Do-Hyeong;Lee, Kyu-Ho;Han, Ki-Seong;Seo, Seung-Won;Lee, Moo-Hee;Lee, Seong-Ik;Cho, Byeong-Ki
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.251-255
    • /
    • 1999
  • Local field distribution in the mixed state of type II superconductors has been numerically calculated and compared with $^{11}$B NMR spectra for YNi$_2B_2C$ single crystals. We find that only small distortion of vortex positions from the perfect lattice points is enough to smear out the low frequency shoulder. As the vortices are further distorted, the line shape changes from an asymmetric shape with a high frequency tail to a symmetric Gaussian line shape. It is found that the second moment of the field distribution has a major contribution from the high frequency tail. Consequently, a linewidth of the full width at half maximum calculated from the second moment assuming for a Gaussian line shape is overestimated.

  • PDF

Software of Slit-Viewing Camera Module for IGRINS (Immersion GRating INfrared Spectrograph)

  • Lee, Hye-In;Pak, Soojong;Lee, Jae-Joon;Mace, Gregory;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.66.1-66.1
    • /
    • 2016
  • We developed an observation control software for the IGRINS (Immersion Grating Infrared Spectrograph) silt-viewing camera module, which points the astronomical target onto the spectroscopy slit and sends tracking feedbacks to the telescope control system. The point spread function (PSF) is not always symmetric. In addition, bright targets are easily saturated and shown as a donut shape. It is not trivial to define and find the center of the asymmetric PSF especially on a slit mask. We made a center balancing algorithm (CBA) following the concept of median. The CBA derives the expected center position along the slit-width axis by referencing the stray flux ratios of both upper and lower sides of the slit. We compared efficiencies of the CBA and those of a two-dimensional Gaussian fitting (2DGA) through simulations from observation images in order to evaluate the center finding algorithms. Both of the algorithms are now applied in observation and users can select the algorithm.

  • PDF

Field Measurements and CFD Simulations of Indoor Thermal Environments in the Assembly Hall (대형 강의실의 실내 열환경 실측 및 컴퓨터시뮬레이션 비교 연구)

  • Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.179-186
    • /
    • 2004
  • The evaluation of the indoor environment of the Assembly Hall in the University, which is designed to be a large space, requires efficient design of its heating system that takes into consideration natural convection and the characteristics of the occupant's spaces. Indoor thermal environment was measured in the field and simulated with CFD code. The estimations of temperature distribution and indoor airflow distribution must be carried out simultaneously, as the thermal stratification is induced by natural convection flows. In order to simulate the even distribution of factors affecting the indoor environment, including temperature and airflow, Phoenics is used. The turbulent flow model adopted is the RNG k- model. The inlets and outlets of the air-conditioning systems, material and thermal properties, and the size of the test room ($35m{\times}18m{\times}10m$) are used for the simulation. Since the Assembly Hall is symmetric, half of the space is simulated. A Cartesian grid is used for calculation and the number of grids are respectively $60{\times}45{\times}35$. The results of the computer simulation during winter conditions are compared with the measurements at the typical points in the assembly hall with the heating system. After evaluating the results of the computer simulations, the methods of the heating system and layout are suggested.

Numerical Simulation of Turbulent Wake Behind SUBOFF Model (SUBOFF 모형 후방 난류항적의 수치 시뮬레이션)

  • Nah, Young-In;Bang, Hyung-Do;Park, Jong-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.517-524
    • /
    • 2010
  • This paper covers the numerical studies performed to investigate the characteristics of turbulent wake generated by a submarine, SUBOFF model. A SUBOFF model assumed as an axial-symmetric body was used to generate wake. The numerical simulation was performed by using a commercial S/W, FLUENT, with the same condition as the experiments by Shin et al.(2009). Mainly the cross-sectional distribution of the time-averaged mean wake and turbulent kinetic energy was compared with the experiments. Both results are agreed well with each other in the propeller wake section, but the agreement between both is not so satisfied in the far wake field. It means that more numerous number of grid points and their concentration should be required in that field.