• Title/Summary/Keyword: symmetric idempotent matrix

Search Result 4, Processing Time 0.021 seconds

SIGN PATTERNS OF IDEMPOTENT MATRICES

  • Hall, Frank J.;Li, Zhong-Shan
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.469-487
    • /
    • 1999
  • Sign patterns of idempotent matrices, especially symmetric idempotent matrices, are investigated. A number of fundamental results are given and various constructions are presented. The sign patterns of symmetric idempotent matrices through order 5 are determined. Some open questions are also given.

  • PDF

CANONICAL FORM OF AN TRANSITIVE INTUITIONISTIC FUZZY MATRICES

  • LEE, HONG-YOUL;JEONG, NAE-GYEONG
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.543-550
    • /
    • 2005
  • Some properties of a transitive fuzzy matrix are examined and the canonical form of the transitive fuzzy matrix is given using the properties. As a special case an open problem concerning idempotent matrices is solved. Thus we have the same result in a intuitionistic fuzzy matrix theory. In our results a nilpotent intuitionistic matrix and a symmetric intuitionistic matrix play an important role. We decompose a transitive intuitionistic fuzzy matrix into sum of a nilpotent intuitionistic matrix and a symmetric intuitionistic matrix. Then we obtain a canonical form of the transitive intuitionistic fuzzy matrix.

  • PDF

Estimators Shrinking towards Projection Vector for Multivariate Normal Mean Vector under the Norm with a Known Interval

  • Baek, Hoh Yoo
    • Journal of Integrative Natural Science
    • /
    • v.11 no.3
    • /
    • pp.154-160
    • /
    • 2018
  • Consider the problem of estimating a $p{\times}1$ mean vector ${\theta}(p-r{\geq}3)$, r = rank(K) with a projection matrix K under the quadratic loss, based on a sample $Y_1$, $Y_2$, ${\cdots}$, $Y_n$. In this paper a James-Stein type estimator with shrinkage form is given when it's variance distribution is specified and when the norm ${\parallel}{\theta}-K{\theta}{\parallel}$ is constrain, where K is an idempotent and symmetric matrix and rank(K) = r. It is characterized a minimal complete class of James-Stein type estimators in this case. And the subclass of James-Stein type estimators that dominate the sample mean is derived.

Structures Related to Right Duo Factor Rings

  • Chen, Hongying;Lee, Yang;Piao, Zhelin
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.11-21
    • /
    • 2021
  • We study the structure of rings whose factor rings modulo nonzero proper ideals are right duo; such rings are called right FD. We first see that this new ring property is not left-right symmetric. We prove for a non-prime right FD ring R that R is a subdirect product of subdirectly irreducible right FD rings; and that R/N∗(R) is a subdirect product of right duo domains, and R/J(R) is a subdirect product of division rings, where N∗(R) (J(R)) is the prime (Jacobson) radical of R. We study the relation among right FD rings, division rings, commutative rings, right duo rings and simple rings, in relation to matrix rings, polynomial rings and direct products. We prove that if a ring R is right FD and 0 ≠ e2 = e ∈ R then eRe is also right FD, examining that the class of right FD rings is not closed under subrings.