• Title/Summary/Keyword: symmetric functions

Search Result 232, Processing Time 0.019 seconds

A Case of Functional Recovery of the Postoperative Bilateral Vocal Cord Paralysis in Papillary Thyroid Carcinoma with Rt. Recurrent Laryngeal Nerve Invasion (우측 반회후두신경을 침범한 갑상선 유두상암 환자의 수술 후 발생한 양측 성대 마비의 회복 1예)

  • Mun, Mi Jin;Wang, Soo Geun;Lee, Yoon Se;Lim, Yun-Sung;Lee, Jin Chun;Kang, Yang Ho;Son, Seok Man;Kim, In Joo
    • Korean Journal of Bronchoesophagology
    • /
    • v.17 no.1
    • /
    • pp.53-56
    • /
    • 2011
  • Vocal cord paralysis (VCP) is a common complication after thyroidectomy despite the continuity of the recurrent laryngeal nerve (RLN) is preserved. Much efforts have been made into preventing VCP, but few of them focuses on the treatment strategies and prognosis after VCP take place. In this case, patient visited the clinic for papillary thyroid cancer in Rt. thyroid gland without VCP. She underwent total thyroidectomy with central neck dissection. During dissection, Rt main mass was encircling Rt. RLN. To make matters worse, Lt. RLN was severed due to tight attachment with Berry's ligament. After that, intratumoural dissection of Rt. RLN and end to end anastomosis of Lt. RLN were performed with microscopy to preserve the functions of RLNs as much as possible, otherwise permanent bilateral VCPs were inevitable. We report this case, since both vocal cords recovered from VCPs with symmetric, synchronous movements at postoperative follow up.

  • PDF

Stability and Post-Buckling Analyses of Thin-Walled Space Frames Using Finite Element Method (박벽 공간뼈대구조의 안정성 및 후좌굴 유한요소해석)

  • 김문영;안성원
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.205-216
    • /
    • 1997
  • In order to trace the lateral post-buckling behaviors of thin-wafled space frames, a geometrically nonlinear finite element formulation is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for symmetric thin-walled cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, tangent stiffness matrices of the thinwalled space frame element with 7 degrees of freedom including the restrained warping for each node are derived by using the Hermition polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines of the frame element due to rigid body rotations and incremental member forces from pure deformations. Finite element solutions for the spatial buckling and post-buckling analysis of thin-walled space frames are presented and compared with available solutions and other researcher's results.

  • PDF

Geometrically Non-linear Finite Element Analysis of Space Frames (공간뼈대구조의 기하학적 비선형 유한요소해석)

  • 김문영;안성원
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.201-211
    • /
    • 1997
  • A clearly consistent finite element formulation for geometrically non-linear analysis of space frames is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for symmetric cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, elastic and geometric stiffness matrices of the space frame element are derived by using the Hermitian polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines of the frame element due to rigid body rotations and incremental member forces from pure deformaions. Finite element solutions for the spatial buckling and post-buckling analysis of space frames are compared with available solutions and other researcher's results.

  • PDF

Cylindrical bending of multilayered composite laminates and sandwiches

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.113-148
    • /
    • 2016
  • In a whole variety of higher order plate theories existing in the literature no consideration is given to the transverse normal strain / deformation effects on flexural response when these higher order theories are applied to shear flexible composite plates in view of minimizing the number of unknown variables. The objective of this study is to carry out cylindrical bending of simply supported laminated composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most important feature of the present theory is that it includes the effects of transverse normal strain/deformation. The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of minimum potential energy. The accuracy of the proposed theory is examined for several configurations of laminates under various static loadings. Some problems are presented for the first time in this paper which can become the base for future research. For the comparison purpose, the numerical results are also generated by using higher order shear deformation theory of Reddy, first-order shear deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present theory provides displacements and stresses very accurately as compared to those obtained by using other theories.

An enhanced signcryption protocol for providing for providing forward secrecy (전방 비밀성을 제공하는 개선된 Signcryption 프로토콜)

  • 이경현;조현호;이준석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7C
    • /
    • pp.653-663
    • /
    • 2002
  • The signature-then-encryption based on RSA scheme provides forward secrecy, but requires 4 modulo exponentiation operations in total, and the signcryption scheme proposed by Zheng simultaneously fulfills both the functions of digital signature and symmetric key encryption in a logically single step, and with a computational cost significantly smaller than that required by the current standard signature-then-encryption, but it can not provide forward secrecy. In this paper, we propose an enhanced signcryption scheme which can provide forward secrecy with lower computational cost and lower communication overhead comparing with those of the signature-then-encryption based on RSA, and with a similar communication overhead of Zheng's scheme. The proposed scheme can be also easily modified to the direct signature verification scheme by the recipient without using the recipient's private key. Additionally, we suggest a new design protocol with server-supported signatures which solves the CRLs(Certificate Revocation Lists) burden and provides non-repudiation of origin. This protocol with server-supported signatures also can be applied to the original signcryption scheme proposed by Zheng in order to improve security.

Dendrite Tip Shapes of Pivalic Acid-Ethanol and Succinonitrile-Salol Systems (Pivalic Acid-Ethanol 및 Succinonitrile-Salol 계에서의 수지상정 선단의 형상)

  • Suk, Myung-Jin;Park, Young-Min;Oh, Sung-Tag;Chang, Si-Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.570-576
    • /
    • 2011
  • The shape of a dendrite tip has long been approximated by a paraboloid of revolution, but many attempts have been made as well to more accurately match the dendrite tip profile using other mathematical functions: power function, 4th order polynomial, and hyperbolic function. In the present work, dendrite tip shapes were matched by parabolic function. The differences between the dendrite tip shapes of pivalic acid(PVA)-ethanol(Eth) and succinonitrile(SCN)-salol systems, characterized by anisotropic and isotropic solid-liquid interfacial properties, respectively, were quantitatively treated using shape parameters. The PVA-Eth system showed a slightly higher Z/R value than the SCN-salol system, their Z/R values lying in the range 2-4. (Z is the distance from the tip beyond which the parabolic fit starts to deviate from the profile, and R the tip radius.) ${\lambda}_P$ is the distance from the tip beyond which side branching starts to appear, and is larger in the PVA-Eth system than the SCNsalol system. ${\lambda}_P$ is different for both sides of the 2-dimensional dendrite profile. The difference of ${\lambda}_P$ between both sides of the dendrite is larger for PVA-Eth system than for SCN-salol, implying that the dendrite of PVA-Eth is less symmetric than that of SCN-salol.

Yield Functions Based on the Stress Invariants J2 and J3 and its Application to Anisotropic Sheet Materials (J2 와 J3 불변량에 기초한 항복함수의 제안과 이방성 판재에의 적용)

  • Kim, Y.S;Nguyen, P.V.;Kim, J.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.214-228
    • /
    • 2022
  • The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a novel anisotropic yield function useful for describing the plastic behavior of various anisotropic sheets. The proposed yield function includes the anisotropic version of the second stress invariant J2 and the third stress invariant J3. The anisotropic yield function newly proposed in this study is as follows. F(J2)+ αG(J3)+ βH (J2 × J3) = km The proposed yield function well explains the anisotropic plastic behavior of various sheets by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to aluminum sheet shows symmetrical yielding behavior and to pure titanium sheet shows asymmetric yielding behavior, it was shown that the yield curve and yield behavior of various types of sheet materials can be predicted reasonably by using the proposed new yield anisotropic function.

Evaluation of Uncertainty Importance Measure for Monotonic Function (단조함수에 대한 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.5
    • /
    • pp.179-185
    • /
    • 2010
  • In a sensitivity analysis, an uncertainty importance measure is often used to assess how much uncertainty of an output is attributable to the uncertainty of an input, and thus, to identify those inputs whose uncertainties need to be reduced to effectively reduce the uncertainty of output. A function is called monotonic if the output is either increasing or decreasing with respect to any of the inputs. In this paper, for a monotonic function, we propose a method for evaluating the measure which assesses the expected percentage reduction in the variance of output due to ascertaining the value of input. The proposed method can be applied to the case that the output is expressed as linear and nonlinear monotonic functions of inputs, and that the input follows symmetric and asymmetric distributions. In addition, the proposed method provides a stable uncertainty importance of each input by discretizing the distribution of input to the discrete distribution. However, the proposed method is computationally demanding since it is based on Monte Carlo simulation.

The auditory evoked potential in premature small for gestational age infants (미숙아로 태어난 부당 경량아의 청각유발전위검사)

  • Moon, Il Hong;Ha, Kee Soo;Kim, Gui Sang;Choi, Byung Min;Eun, Baik-Lin;Yoo, Kee Hwan;Hong, Young Sook;Lee, Joo Won
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.12
    • /
    • pp.1308-1314
    • /
    • 2006
  • Purpose : This study aimed to evaluate the usefulness of auditory evoked potential (AEP) in clarifying neuronal development in premature small for gestational age (SGA), and appropriate for gestational age (AGA) infants. Methods : A total of 183 premature infants who were born from August 2002 to July 2005, were examined with AEP. They were divided into three groups; AGA, symmetric-SGA and asymmetric-SGA group. Results : Statistically significant differences in the head circumference were observed in three groups. Among the risk factors, prevalence of hypoglycemia and hypoalbuminemia between AGA and asymmetric SGA infants were significantly different. V absolute peak latency (APL) in the right side of AGA infants was delayed were than that of asymmetric SGA infants. III-V interpeak latency (IPL) of asymmetric SGA infants was delayed more than that of symmetric SGA infants. Moreover, I-V IPL on both sides of symmetric SGA infants was shortened more than that of AGA infants. However, all the results of AEP were within the reference range, according to gestational age. Birth weight of, only asymmetric SGA, was related to the III APL on both sides and the III-V IPL on right side. Conclusion : This study shows that the values of APL and IPL of premature SGA infants are different than that of premature AGA infants. These data could be an indicator in evaluating the neurologic functions of small for gestational age infants.

Improved Method Evaluating the Stiffness Matrices of Thin-walled Beam on Elastic Foundations (탄성지반위에 놓인 박벽보의 강성행렬산정을 위한 개선된 해석기법)

  • Kim, Nam-Il;Jung, Sung-Yeop;Lee, Jun-Seok;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.113-125
    • /
    • 2007
  • Improved numerical method to obtain the exact stiffness matrices is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric and open/closed thin-walled beam on elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column This numerical technique is accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Next polynomial expressions as trial solutions are assumed for displacement parameters corresponding to zero eigenvalues and the eigenmodes containing undetermined parameters equal to the number of zero eigenvalues are determined by invoking the identity condition. And then the exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions. In order to illustrate the accuracy and the practical usefulness of this study, the numerical solutions are compared with results obtained from the thin-walled beam and shell elements.