• 제목/요약/키워드: symmetric deformation

검색결과 180건 처리시간 0.02초

Exact dynamic element stiffness matrix of shear deformable non-symmetric curved beams subjected to initial axial force

  • Kim, Nam-Il;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제19권1호
    • /
    • pp.73-96
    • /
    • 2005
  • For the spatially coupled free vibration analysis of shear deformable thin-walled non-symmetric curved beam subjected to initial axial force, an exact dynamic element stiffness matrix of curved beam is evaluated. Firstly equations of motion and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next a system of linear algebraic equations are constructed by introducing 14 displacement parameters and transforming the second order simultaneous differential equations into the first order simultaneous differential equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact $14{\times}14$ dynamic element stiffness matrix is determined using force-deformation relations. To demonstrate the accuracy and the reliability of this study, the spatially coupled natural frequencies of shear deformable thin-walled non-symmetric curved beams subjected to initial axial forces are evaluated and compared with analytical and FE solutions using isoparametric and Hermitian curved beam elements and results by ABAQUS's shell elements.

Series solutions for spatially coupled buckling anlaysis of thin-walled Timoshenko curved beam on elastic foundation

  • Kim, Nam-Il
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.447-484
    • /
    • 2009
  • The spatially coupled buckling, in-plane, and lateral bucking analyses of thin-walled Timoshenko curved beam with non-symmetric, double-, and mono-symmetric cross-sections resting on elastic foundation are performed based on series solutions. The stiffness matrices are derived rigorously using the homogeneous form of the simultaneous ordinary differential equations. The present beam formulation includes the mechanical characteristics such as the non-symmetric cross-section, the thickness-curvature effect, the shear effects due to bending and restrained warping, the second-order terms of semitangential rotation, the Wagner effect, and the foundation effects. The equilibrium equations and force-deformation relationships are derived from the energy principle and expressions for displacement parameters are derived based on power series expansions of displacement components. Finally the element stiffness matrix is determined using force-deformation relationships. In order to verify the accuracy and validity of this study, the numerical solutions by the proposed method are presented and compared with the finite element solutions using the classical isoparametric curved beam elements and other researchers' analytical solutions.

Static analysis of laminated and sandwich composite doubly-curved shallow shells

  • Alankaya, Veysel;Oktem, Ahmet Sinan
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.1043-1066
    • /
    • 2016
  • A new analytical solution based on a third order shear deformation theory for the problem of static analysis of cross-ply doubly-curved shells is presented. The boundary-discontinuous generalized double Fourier series method is used to solve highly coupled linear partial differential equations with the mixed type simply supported boundary conditions prescribed on the edges. The complementary boundary constraints are introduced through boundary discontinuities generated by the selected boundary conditions for the derivation of the complementary solution. The numerical accuracy of the solution is compared by studying the comparisons of deflections, stresses and moments of symmetric and anti-symmetric laminated shells with finite element results using commercially available software under uniformly distributed load. Results are in good agreement with finite element counterparts. Additional results of the symmetric and anti-symmetric laminated and sandwich shells under single point load at the center and pressure load, are presented to provide data for the unsolved boundary conditions, benchmark comparisons and verifications.

고차전단변형이론에 기초한 4절점 가변형률 판 요소를 이용한 대칭 및 비대칭 적층 판의 유한요소해석 (FE Analysis of Symmetric and Unsymmetric Laminated Plates by using 4-node Assumed Strain Plate Element based on Higher Order Shear Deformation Theory)

  • 이상진;김하룡
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.95-100
    • /
    • 2008
  • 대칭 및 비대칭 적층판의 거동을 연구하기 위하여 가변형률과 고차전단변형이론을 바탕으로 4절점 판 유한요소(HSA4)를 개발하였다. 개발된 판 요소는 적층 판의 두께 방향으로 나타나는 전단변형의 포물선 분포를 고려하기 위하여 Reddy의 고차전단변형이론을 도입하였다. 특히 전단변형을 고려한 판 요소에서 발생하는 전단과대현상을 해결하기 위하여 가변형률을 채용하였다, 본 연구를 통하여 개발한 판요소는 고차전단변형이론을 도입하여 각 절점당 7개의 자유도를 가지므로 요소전체에 28개의 자유도로 판의 변형을 표현하게 된다. 개발된 유한요소의 성능을 검증하고 우수성을 보여주기 위해 다양한 두께를 가지는 대칭 및 비대칭 적층 판에 대한 수치해석을 수행하였으며 그 결과를 다른 고차전단변형이론에 의해 도출된 참고해들과 비교하였다.

  • PDF

베어링-축 조립체에서 축의 셰이크다운에 관한 연구 (Shakedown Analysis of Shaft in Bearing-Shaft Assembly)

  • 박흥근;박진무;오윤찬
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1740-1747
    • /
    • 2000
  • Under repeated rolling, initial plastic deformation introduces residual stresses which render the steady cyclic state purely elastic. This is called the process of shakedown. Many studies have been done about the shakedown in semi-infinite half space using calculated Hertizian pressure. In this paper shakedown processes in a shaft are studied by finite element analyses of a two dimensional(plane strain) model with elastic-linear-kinematic-hardening-plastic material subjected to repeated, frictionless rolling contact. Symmetric and non-symmetric pressure distributions are obtained using a simplified model of the bearing-shaft assembly. The rolling contact is simulated by repeatedly translating both pressure distributions along the surface of the shaft. By the influence of the non-symmetric pressure, larger residual radial tensile stress is generated in the immediate subsurface layer, which may make a crack propagate and, the subsurface undergoes a zigzag plastic deformation during the shakedown process, which may lead to a crack initiation.

Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness under shear deformation theory

  • Viswanathan, K.K.;Javed, Saira;Aziz, Zainal Abdul
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.259-275
    • /
    • 2013
  • Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness is analyzed under shear deformation theory with different boundary conditions by applying collocation with spline approximation. Linear and exponential variation in thickness of layers are assumed in axial direction. Displacements and rotational functions are approximated by Bickley-type splines of order three and obtained a generalized eigenvalue problem. This problem is solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration of three and five-layered conical shells, made up of two different type of materials are considered. Parametric studies are made for analysing the frequencies of the shell with respect to the coefficients of thickness variations, length-to-radius ratio, length-to-thickness ratio and ply angles with different combination of the materials. The results are compared with the available data and new results are presented in terms of tables and graphs.

Study on bi-stable behaviors of un-stressed thin cylindrical shells based on the extremal principle

  • Wu, Yaopeng;Lu, Erle;Zhang, Shuai
    • Structural Engineering and Mechanics
    • /
    • 제68권3호
    • /
    • pp.377-384
    • /
    • 2018
  • Bi-stable structure can be stable in both its extended and coiled forms. For the un-stressed thin cylindrical shell, the strain energy expressions are deduced by using a theoretical model in terms of only two parameters. Based on the principle of minimum potential energy, the bi-stable behaviors of the cylindrical shells are investigated. The results indicate that the isotropic cylindrical shell does not have the second stable configuration and laminated cylindrical shells with symmetric or antisymmetric layup of fibers have the second stable state under some confined conditions. In the case of antisymmetric laminated cylindrical shell, the analytical expressions of the stability are derived based on the extremal principle, and the shell can achieve a compact coiled configuration without twist deformation in its second stable state. In the case of symmetric laminated cylindrical shell, the explicit solutions for the stability conditions cannot be deduced. Numerical results show that stable configuration of symmetric shell is difficult to achieve and symmetric shell has twist deformation in its second stable form. In addition, the roll-up radii of the antisymmetric laminated cylindrical shells are calculated using the finite element package ABAQUS. The results show that the value of the roll-up radii is larger from FE simulation than from theoretical analysis. By and large, the predicted roll-up radii of the cylindrical shells using ABAQUS agree well with the theoretical results.

Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates

  • Benhenni, Mohamed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Adim, Belkacem;Li, Yuming;Abbes, Fazilay
    • Advances in materials Research
    • /
    • 제7권2호
    • /
    • pp.119-136
    • /
    • 2018
  • In this paper, static and vibration analysis for anti-symmetric cross-ply and angle- ply carbon/glass hybrid laminates rectangular composite plate are presented. In this analysis, the equations of motion for simply supported thick laminated hybrid rectangular plates are derived and obtained through the use of Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle- ply laminates are obtained using Navier solution. The effects of side-to-thickness ratio, aspect ratio, and lamination schemes on the fundamental frequencies loads are investigated. The study concludes that shear deformation laminate theories accurately predict the behavior of composite laminates, whereas the classical laminate theory over predicts natural frequencies. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behaviors of anti-symmetric cross-ply and angle- ply hybrid laminated composite plates.

GEOMETRY ON EXOTIC HYPERBOLIC SPACES

  • Kim, In-Kang
    • 대한수학회지
    • /
    • 제36권3호
    • /
    • pp.621-631
    • /
    • 1999
  • In this paper we briefly describe the geometry of the Cayley hyperbolic plane and we show that every uniform lattice in quaternionic space cannot be deformed in the Cayley hyperbolic 2-plane. We also describe the nongeometric bending deformation by developing the theory of the Cartan angular invariant for quaternionic hyperbolic space.

  • PDF

축대칭 단조공정에서 최종제품의 탄성회복에 관한 해석 (Determination of Elastic Recovery for Axi-Symmetric Forged Products)

  • Kim, T.H.;Kim, D.J.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.165-173
    • /
    • 1996
  • The dimensional accuracy of a final product is mainly affected by elastic die deformation during the forging and elastic recovery after the ejection in cold forging process. The investigations on elastic recovery are not so much as those of elastic die deformation. The elastic recovery can be determined by using the elastic-plalstic finite element analysis, but, this method has some limits such as poor conver- gence and long computational time, etc. In this paper, a theoretical analysis for predicting the elastic recovery of a final product in axi-symmetric forging process by using the rigid-plastic finite element method is presented. The rigid-plastic finite element analysis of a cold forward extrusion process involving loading, ejecting process is accomplished by rigid-plastic FE code, DEFORM. The effect of elastic die deformation on the final product dimenmsion is also considered. The calculated elastic recovery is compared is compared with the analysis result of elastic-plastic FE code. ABAQUS.

  • PDF