• 제목/요약/키워드: symmetric bi-generalized derivation

검색결과 3건 처리시간 0.017초

ON SYMMETRIC BI-GENERALIZED DERIVATIONS OF LATTICE IMPLICATION ALGEBRAS

  • Kim, Kyung Ho
    • 충청수학회지
    • /
    • 제32권2호
    • /
    • pp.179-189
    • /
    • 2019
  • In this paper, we introduce the notion of symmetric bi-generalized derivation of lattice implication algebra L and investigated some related properties. Also, we prove that a map $F:L{\times}L{\rightarrow}L$ is a symmetric bi-generalized derivation associated with symmetric bi-derivation D on L if and only if F is a symmetric map and it satisfies $F(x{\rightarrow}y,z)=x{\rightarrow}F(y,z)$ for all $x,y,z{\in}L$.

ON GENERALIZED SYMMETRIC BI-DERIVATIONS IN PRIME RINGS

  • Ozturk, M. Ali;Sapanci, Mehmet
    • East Asian mathematical journal
    • /
    • 제15권2호
    • /
    • pp.165-176
    • /
    • 1999
  • After the derivation was defined in [19] by Posner a lot of researchers studied the derivations in ring theory in different manners such as in [2], [4], [5], ..., etc. Furthermore, many researches followed the definition of the generalized derivation([3], [6], [7], ..., etc.). Finally, Maksa defined a symmetric bi-derivation and many researches have been done in ring theory by using this definition. In this work, defining a symmetric bi-$\alpha$-derivation, we study the mentioned researches above in the light of this new concept.

  • PDF

ON GENERALIZED SYMMETRIC BI-f-DERIVATIONS OF LATTICES

  • Kim, Kyung Ho
    • 충청수학회지
    • /
    • 제35권2호
    • /
    • pp.125-136
    • /
    • 2022
  • The goal of this paper is to introduce the notion of generalized symmetric bi-f-derivations in lattices and to study some properties of generalized symmetric f-derivations of lattice. Moreover, we consider generalized isotone symmetric bi-f-derivations and fixed sets related to generalized symmetric bi-f-derivations.