• 제목/요약/키워드: switching states

검색결과 215건 처리시간 0.022초

A Novel Switched Capacitor High Step-up dc/dc Converter Using a Coupled Inductor with its Generalized Structure

  • Hamkari, Sajjad;Moradzadeh, Majid;Zamiri, Elyas;Nasir, Mehdi;Hosseini, Seyed Hossein
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.579-589
    • /
    • 2017
  • In this study a new high step-up dc-dc converter is presented. The operation of the proposed converter is based on the capacitor switching and coupled inductor with a single active power switch in its structure. A passive voltage clamp circuit with two capacitors and two diodes is used in the proposed converter for elevating the converter's voltage gain with the recovered energy of the leakage inductor, and for lowering the voltage stress on the power switch. A switch with a low $R_{DS}$ (on) can be adopted to reduce conduction losses. In the generalized mode of the proposed converter, to reach a desired voltage gain, capacitor stages with parallel charge and series discharge techniques are extended from both sides of secondary side of the coupled inductor. The proposed converter has the ability to alleviate the reverse recovery problem of diodes with circuit parameters. The operating principle and steady-states analyses are discussed in detail. A 40W prototype of the proposed converter is implemented in the laboratory to verify its operation.

Double Line Voltage Synthesis Strategy for Three-to-Five Phase Direct Matrix Converters

  • Wang, Rutian;Zhao, Yanfeng;Mu, Xingjun;Wang, Weiquan
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.81-91
    • /
    • 2018
  • This paper proposes a double line voltage synthesis (DLVS) strategy for three-to-five phase direct matrix converters. In the proposed strategy, the input and expected output voltages are divided into 6 segments and 10 segments, respectively. In addition, in order to obtain the maximum voltage transfer ratio (VTR), the input line voltages and "source key" should be selected reasonably according to different combinations of input and output segments. Then, the corresponding duty ratios are calculated to determine the switch sequences in different segment combinations. The output voltages and currents are still sinusoidal and symmetrical with little lower order harmonics under unbalanced or distorted input voltages by using this strategy. In addition, the common mode voltage (CMV) can be suppressed by rearranging some of the switching states. This strategy is analyzed and studied by a simulation model established in MATLAB/Simulink and an experimental platform, which is controlled by a DSP and FPGA. Simulation and experimental results verify the feasibility and validity of the proposed DLVS strategy.

Fault Tolerant Operation of CHB Multilevel Inverters Based on the SVM Technique Using an Auxiliary Unit

  • Kumar, B. Hemanth;Lokhande, Makarand M.;Karasani, Raghavendra Reddy;Borghate, Vijay B.
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.56-69
    • /
    • 2018
  • In this paper, an improved Space Vector Modulation (SVM) based fault tolerant operation on a nine-level Cascaded H-Bridge (CHB) inverter with an additional backup circuit is proposed. Any type of fault in a power converter may result in a power interruption and productivity loss. Three different faults on H-bridge modules in all three phases based on the SVM approach are investigated with diagrams. Any fault in an inverter phase creates an unbalanced output voltage, which can lead to instability in the system. An additional auxiliary unit is connected in series to the three phase cascaded H-bridge circuit. With the help of this and the redundant switching states in SVM, the CHB inverter produces a balanced output with low harmonic distortion. This ensures high DC bus utilization under numerous fault conditions in three phases, which improves the system reliability. Simulation results are presented on three phase nine-level inverter with the automatic fault detection algorithm in the MATLAB/SIMULINK software tool, and experimental results are presented with DSP on five-level inverter to validate the practicality of the proposed SVM fault tolerance strategy on a CHB inverter with an auxiliary circuit.

Harmonic Current Compensation Using Active Power Filter Based on Model Predictive Control Technology

  • Adam, Misbawu;Chen, Yuepeng;Deng, Xiangtian
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1889-1900
    • /
    • 2018
  • Harmonic current mitigation is vital in power distribution networks owing to the inflow of nonlinear loads, distributed generation, and renewable energy sources. The active power filter (APF) is the current electrical equipment that can dynamically compensate for harmonic distortion and eliminate asymmetrical loads. The compensation performance of an APF largely depends on the control strategy applied to the voltage source inverter (VSI). Model predictive control (MPC) has been demonstrated to be one of the effective control approaches to providing fast dynamic responses. This approach covers different types of power converters due to its several advantages, such as flexible control scheme and simple inclusion of nonlinearities and constraints within the controller design. In this study, a finite control set-MPC technique is proposed for the control of VSIs. Unlike conventional control methods, the proposed technique uses a discrete time model of the shunt APF to predict the future behavior of harmonic currents and determine the cost function so as to optimize current errors through the selection of appropriate switching states. The viability of this strategy in terms of harmonic mitigation is verified in MATLAB/Simulink. Experimental results show that MPC performs well in terms of reduced total harmonic distortion and is effective in APFs.

Special Quantum Steganalysis Algorithm for Quantum Secure Communications Based on Quantum Discriminator

  • Xinzhu Liu;Zhiguo Qu;Xiubo Chen;Xiaojun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1674-1688
    • /
    • 2023
  • The remarkable advancement of quantum steganography offers enhanced security for quantum communications. However, there is a significant concern regarding the potential misuse of this technology. Moreover, the current research on identifying malicious quantum steganography is insufficient. To address this gap in steganalysis research, this paper proposes a specialized quantum steganalysis algorithm. This algorithm utilizes quantum machine learning techniques to detect steganography in general quantum secure communication schemes that are based on pure states. The algorithm presented in this paper consists of two main steps: data preprocessing and automatic discrimination. The data preprocessing step involves extracting and amplifying abnormal signals, followed by the automatic detection of suspicious quantum carriers through training on steganographic and non-steganographic data. The numerical results demonstrate that a larger disparity between the probability distributions of steganographic and non-steganographic data leads to a higher steganographic detection indicator, making the presence of steganography easier to detect. By selecting an appropriate threshold value, the steganography detection rate can exceed 90%.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

저출력 및 과도상태시 원전 증기발생기 수위제어에 관한 연구 (A Study on Water Level Control of PWR Steam Generator at Low Power Operation and Transient States)

  • 나난주;권기춘;변증남
    • 한국지능시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.18-35
    • /
    • 1993
  • 가압경수로형 원자력발전소 수위제어시스템과 특히 저출력시 수위제어상의 문제점들이 분석 및 고찰되었으며 저출력으로 운전시의 여러 과도특성에서도 안정된 제어를 하고 급수펌프고장과 같은 큰 수위변동 발생시에는 신속한 수위응답을 얻기 위한 방법이 주로 연구되었다. 제어기의 기본 알고리즘으로 퍼지제어기법을 적용하였으며 여기에 필요한 제어규칙 및 알고리즘은 운전원의 지식과 한국원자력연구소에 설치된 교육훈련용 모의제어반에서의 수동운전경험을 바탕으로 설정되었다. 실제 시스템 구현관점에서 제어변수 및 적용규칙은 보다 간편한 튜닝과 입출력변수간의 영향을 고려하여 세워졌다. 저유량일 때 측정이 불량한 유량신호에 대해, 중기발생기를 압력제어모드로 운전할 때에는 유량차의 퍼지변수로서 우회급수밸브의 개도를 이용한 대체정보를 채용하였으며 수위오차의 크기에 따라 유량차의 소속함수를 달리하는 동적인 튜닝방법을 사용하였다. 또한 우회급수와 주급수밸브간 간단한 전환알고리즘의 적용으로 밸브절환시의 수위요동을 억제하고자 하였다. 시뮬레이션 결과 저출력구간에서 원자로출력변동에 대해 기존에 설치된 방법보다 안정된 제어를 하고 동적 튜닝의 적용으로 미세제어동작과 수위오차가 큰 영역의 제어에 대해 신속한 응답과 함께 제어성능이 개선되었음을 보였다.

  • PDF

Molecular Conductance Switching Processes through Single Ruthenium Complex Molecules in Self-Assembled Monolayers

  • 서소현;이정현;방경숙;이효영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.27-27
    • /
    • 2011
  • For the design of real applicable molecular devices, current-voltage properties through molecular nanostructures such as metal-molecule-metal junctions (molecular junctions) have been studied extensively. In thiolate monolayers on the gold electrode, the chemical bonding of sulfur to gold and the van der Waals interactions between the alkyl chains of neighboring molecules are important factors in the formation of well-defined monolayers and in the control of the electron transport rate. Charge transport through the molecular junctions depends significantly on the energy levels of molecules relative to the Fermi levels of the contacts and the electronic structure of the molecule. It is important to understand the interfacial electron transport in accordance with the increased film thickness of alkyl chains that are known as an insulating layer, but are required for molecular device fabrication. Thiol-tethered RuII terpyridine complexes were synthesized for a voltage-driven molecular switch and used to understand the switch-on mechanism of the molecular switches of single metal complexes in the solid-state molecular junction in a vacuum. Electrochemical voltammetry and current-voltage (I-V) characteristics are measured to elucidate electron transport processes in the bistable conducting states of single molecular junctions of a molecular switch, Ru(II) terpyridine complexes. (1) On the basis of the Ru-centered electrochemical reaction data, the electron transport rate increases in the mixed self-assembled monolayer (SAM) of Ru(II) terpyridine complexes, indicating strong electronic coupling between the redox center and the substrate, along the molecules. (2) In a low-conducting state before switch-on, I-V characteristics are fitted to a direct tunneling model, and the estimated tunneling decay constant across the Ru(II) terpyridine complex is found to be smaller than that of alkanethiol. (3) The threshold voltages for the switch-on from low- to high-conducting states are identical, corresponding to the electron affinity of the molecules. (4) A high-conducting state after switch-on remains in the reverse voltage sweep, and a linear relationship of the current to the voltage is obtained. These results reveal electron transport paths via the redox centers of the Ru(II) terpyridine complexes, a molecular switch.

  • PDF

X-대역 능동 위상 배열 레이더시스템용 저전력 GaAs MMIC 다기능 칩 (A Low Power GaAs MMIC Multi-Function Chip for an X-Band Active Phased Array Radar System)

  • 정진철;신동환;주인권;염인복
    • 한국전자파학회논문지
    • /
    • 제25권5호
    • /
    • pp.504-514
    • /
    • 2014
  • 본 논문에서는 X-대역 능동 위상 배열 레이더 시스템에 사용되는 MMIC 다기능 칩을 0.5 ${\mu}m$ p-HEMT 상용 공정을 이용하여 저전력 특성을 가지도록 개발하였다. 다기능 칩은 6-비트 디지털 위상 천이 기능, 6-비트 디지털 감쇠 기능, 송/수신 모드 선택 기능, 신호 증폭 기능 등의 다양한 기능을 제공한다. $16mm^2(4mm{\times}4mm)$ 칩 크기의 소형으로 제작된 MMIC 다기능 칩은 7~11 GHz에서 10 dB의 송/수신 이득 특성과 14 dBm의 P1dB 특성을 가지며, DC 소모 전력이 0.6 W로 매우 낮은 저전력 특성을 보였다. 그리고 6-비트, 64 상태에 대해 위상 천이 특성과 감쇠 특성의 측정 결과, 동작 주파수에서 $3^{\circ}$의 RMS(Root Mean Square) 위상 오차와 0.6 dB의 RMS 감쇠 오차를 보였다.

Electrical Characteristics of SiO2/4H-SiC Metal-oxide-semiconductor Capacitors with Low-temperature Atomic Layer Deposited SiO2

  • Jo, Yoo Jin;Moon, Jeong Hyun;Seok, Ogyun;Bahng, Wook;Park, Tae Joo;Ha, Min-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.265-270
    • /
    • 2017
  • 4H-SiC has attracted attention for high-power and high-temperature metal-oxide-semiconductor field-effect transistors (MOSFETs) for industrial and automotive applications. The gate oxide in the 4H-SiC MOS system is important for switching operations. Above $1000^{\circ}C$, thermal oxidation initiates $SiO_2$ layer formation on SiC; this is one advantage of 4H-SiC compared with other wide band-gap materials. However, if post-deposition annealing is not applied, thermally grown $SiO_2$ on 4H-SiC is limited by high oxide charges due to carbon clusters at the $SiC/SiO_2$ interface and near-interface states in $SiO_2$; this can be resolved via low-temperature deposition. In this study, low-temperature $SiO_2$ deposition on a Si substrate was optimized for $SiO_2/4H-SiC$ MOS capacitor fabrication; oxide formation proceeded without the need for post-deposition annealing. The $SiO_2/4H-SiC$ MOS capacitor samples demonstrated stable capacitance-voltage (C-V) characteristics, low voltage hysteresis, and a high breakdown field. Optimization of the treatment process is expected to further decrease the effective oxide charge density.