• Title/Summary/Keyword: switchgrass

Search Result 13, Processing Time 0.026 seconds

Thermogravimetric and Fourier Transform Infrared Analysis of Switchgrass Pyrolysis (스위치그라스 열분해에 대한 TGA-FTIR 분석)

  • Lee, Seong-Beom;Fasina, Oladiran O.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • This study was conducted to investigate the pyrolysis characteristics of switchgrass using TGA-FTIR instrument. Switchgrass is a high yielding perennial grass that has been designated as a potential energy crop, because of its high energy value. Ground switchgrass were pyrolysed at different heating rates of 10, 20, 30, and $40^{\circ}C/min$ in a TGA-FTIR instrument. The thermal decomposition characteristics of switchgrass were analyzed, and the gases volatilized during the experiment were identified. The thermal decomposition of switchgrass started at approximately $220^{\circ}C$, followed by a major loss of weight, where the main volatilization occurred, and the thermal decomposition was essentially completed by $430^{\circ}C$. The pyrolysis process was found to compose of four stages; moisture evaporation, hemicellulose decomposition, cellulose decomposition, and lignin degradation. The peak temperatures for hemicellulose decomposition ($306^{\circ}C$ to $327^{\circ}C$) and cellulose decomposition ($351^{\circ}C$ to $369^{\circ}C$) were increased with greater heating rates. FTIR analysis showed that the following gases were released during the pyrolysis of switchgrass; $CO_2$, CO, $CH_4$, $NH_3$, COS, $C_{2}H_{4}$, and some acetic acid. The most gas species were released at low temperature from 310 to $380^{\circ}C$, which was corresponding well with the observation of thermal decomposition.

Recent advances in tissue culture and genetic transformation system of switchgrass as biomass crop (바이오에너지 개발용 스위치그라스의 조직배양 및 형질전환 최근 연구동향)

  • Lee, Sang Il;Lim, Sung-Soo;Roh, Hee Sun;Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.185-191
    • /
    • 2013
  • Over the past decades, carbon dioxide concentration of the atmosphere of the world has increased significantly, and thereby the greenhouse effect has become a social issue. To solve this problem, new renewable energy sources including solar, hydrogen, geothermal, wind and bio-energy are suggested as alternatives. Among these new energy sources, bio-energy crops are widely introduced and under rapid progress. For example, corn and oilseed rape plants are used for the production of bio-ethanol and bio-diesel, respectively. However, grain prices has increased severely because of the use of corn for bio-ethanol production. Therefore, non-edible switchgrass draws attention as an alternative source for bio-ethanol production in USA. This review describes the shortage of fossil energy and an importance of switchgrass as a bio-energy crop. Also, some characteristics of its major cultivars are introduced including growth habit, total output of biomass yields. Furthermore, biotechnological approaches have been conducted to improve the productivity of switchgrass using tissue culture and genetic transformation.

Nitrogen Dynamics in Soil Amended with Different Rate of Nitrogen Fertilizer

  • Kim, Sung Un;Choi, Eun-Jung;Jeong, Hyun-Cheol;Lee, Jong-Sik;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.574-587
    • /
    • 2017
  • Excessive application of nitrogen (N) fertilizer to support switchgrass growth for bioenergy production may cause adverse environmental effects. The objective of this study was to determine optimum N application rate to increase biomass yield of switchgrass and to reduce adverse environmental effects related to N. Switchgrass was planted in May 2008 and biomass yield, N uses of switchgrass, nitrate ($NO_3$) leaching, and nitrous oxide ($N_2O$) emission were evaluated from 2010 through 2011. Total N removal significantly increased with N rate despite the fact that yield did not increased with above $56kg\;N\;ha^{-1}$ of N rate. Apparent nitrogen recoveries were 4.81 and 5.48% at 56 and $112kg\;N\;ha^{-1}$ of N rate, respectively. Nitrogen use efficiency decreased into half with increasing N rate from 56 to $112kg\;N\;ha^{-1}$. Nitrate leaching and $N_2O$ emission were related to N use of switchgrass. There was no significant difference of cumulative $NO_3$ leaching between 0 and $56kg\;N\;ha^{-1}$ but, it significantly increased at $112kg\;N\;ha^{-1}$. There was no significant difference of cumulative $N_2O$ emission among N rates in crest, but it significantly increased at $112kg\;N\;ha^{-1}$ in toe. Excessive N application rate (above $56kg\;N\;ha^{-1}$) beyond plant requirement could accelerate $NO_3$ leaching and $N_2O$ emission in switchgrass field. Overall, $56kg\;N\;ha^{-1}$ might be optimum N application rate in reducing economic waste on N fertilizer and adverse environmental impacts.

Effects of Cultivars and Seeding Dates on Chemical Composition and Energy Content of Switchgrass (Panicumvirgatum L.) in Republic of Korea

  • Ji, Do-Hyeon;Kim, Byong-Wan;Sargolzehi, Mohammad Mahdi;Kang, Shin-Gon;Lee, Bae-Hun;Peng, Jing-Lun;Nejad, Jalil Ghassemi;Min, Doo-Hong;Sung, Kyung-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.179-186
    • /
    • 2014
  • The objective of this study was to determine the best performing switchgrass (Panicumvirgatum L.) cultivar with three different seeding dates as a bioenergy source in Republic of Korea. Split-plot in time with three replications was performed and three switchgrass cultivars, Carthage (CT), Cave-in-Rock (CIR), and Forestburg (FB) were used in this experiment from 2009 to 2012. Plots were seeded on April 23, May 4, and May 13, 2009 and were harvested once in November each year. No fertilizer was applied to the field for the first year; however, in second and third years (June 2010 and May 2011, respectively), N, $P_2O_5$ and K2O fertilizers were applied in 67,45 and 90 kg $ha^{-1}$, respectively. Soil pH (5.9) and climate condition including temperature ($10.4{\sim}17.5^{\circ}C$) and precipitation (89.4~109.8 mm $month^{-1}$) were suitable for switchgrass cultivation. Total dry matter yields were higher in CT and CIR compared to FB and were 16.9, 15.9, and 4.5 ton $ha^{-1}$, for CT, CIR, and FB, respectively (p<0.0001). The samples were analyzed for dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), crude fiber (CF), ether extract (EE), and ash. No significant differences in energy content (p = 0.96) and chemical composition among cultivars (p>0.05) were found. Seeding dates did not affect DM yield (ton $ha^{-1}$), chemical composition and energy content significantly (p>0.05). Significant difference was observed for heights among CT, CIR, and FB (177.59, 169.98, and 94.89 cm, respectively, p = 0.0002). In conclusion, based on soil characteristics and climate condition in Korea compared to other countries, switchgrass can be cultivated successfully. Considering dry matter yield and energy content of these three cultivars of switchgrass CT and CIR adapted better to climate in Middle Eastern of Republic of Korea than Forestburg for bioenergy purpose.

Bioethanol Production from Popping Pretreated Switchgrass (팝핑전처리한 스위치그라스로부터 바이오에탄올 생산)

  • Kim, Hyun-Joo;Bae, Hyeun-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.147-155
    • /
    • 2012
  • Switchgrass was selected as a promising biomass resource for bioethanol production through popping pretreatment, enzymatic saccharification and fermentation using commercial cellulase and xylanase, and fermenting yeast. The reducing sugar yields of popping pretreated switchgrass after enzymatic saccharification were above 95% and the glucose in thesaccharificaiton solution to ethanol conversion rate after fermentation with $Saccharomyces$ $cerevisiae$ was reached to 89.6%. Chemical compositions after popping pretreatment developed in our laboratory were 40.8% glucose and 20.3% xylose, with much of glucose remaining and only xylose decreased to 4.75%. This means that the hemicelluloses area broke off during popping pretreatment. FE-SEMexamination of substrate particles after popping pretreatment was showed fiber separation, and tearing and presence of numerous micro pores. These changes help explain, enhanced enzymatic penetration resulting in improved hydrolysis of switchgrass particles after popping pretreatment.

Spring Green-up and Winter Leaf Discoloration of Three Ornamental Grasses (Gramineae spp.) (화본과 관상용그래스 3종의 봄철 그린업과 겨울철 엽색 퇴화)

  • Kim, Ki-Dong;Lee, Jeong-Ho;Joo, Young-Kyoo
    • Weed & Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.49-57
    • /
    • 2015
  • This research was initiated to analyze the periods of spring green-up and winter leaf discoloration of three ornamental grasses which have potential to be widely used with seed propagation. Two native grasses of Arundinella (Arundinella hirta var. ciliata Koidz), fountaingrass (Pennisetum alopecuroides (L.) Spreng), and switchgrass (Panicum virgatum L.) was tested. Spring green-up were evaluated after one year growth from seed propagation on April 1, 2009. Arundinella started with quick pick of spring green-up during $13^{th}$ to $20^{th}$ of May. Fountaingrass and switchgrass showed relatively slow picks of green-up during $20^{th}$ to $27^{th}$ of May. However, winter leaf discoloration started on swtichgrass and fountaingrass but Arundinella terminated relatively slowly. Swtichgrass showed the pick discoloration during $8^{th}$ to $15^{th}$ of October from the bottom to top parts of the plant. Fountaingrass showed the pick winter discoloration started from bottom to top parts during the $22^{nd}$ to $29^{th}$ of October. However, Arundinella showed relatively slow discoloration from upper to bottom parts during October $29^{th}$ to November $5^{th}$. Arundinella showed a relatively higher ornamental value with 125 days of the complete green period compared than fountaingrass and swtichgrass which maintained approximately 105 days of green period.

Development of EST-SSR markers for genetic diversity analysis in little millet (Panicum sumatrense) genetic resources

  • Lee, Myung-Chul;Choi, Yu-Mi;Lee, Sukyeung;Yoon, Hyemyeong;Oh, Sejong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.74-74
    • /
    • 2018
  • Little millet (Panicum sumatrense) is well known for its salt and drought stress tolerance and high nutritional value, but very limited knowledge of genetic variation and genomic information is available. This study was to develop highly polymorphic EST-SSR markers based on cross-species transferability of derived SSRs from switchgrass EST databases and characterize newly developed EST - SSRs to better understand the genetic diversity of collected 37 germplasm accessions of little millet. A total of 779 primer pairs were designed from the 22,961 EST sequences of switchgrass (Pancium virgatum), of which 48 EST - SSR markers were developed based on the trials of transferability of these primers in little millet. The EST - SSR amplicons showed reproducible single band polymorphism and produced a total of 160 alleles with an average of 3.3 alleles per locus in 37 accessions of little millet. T he average values of expected and observed heterozygosities were 0.266 and 0.123, respectively. T he polymorphic information content (PIC) values were observed in range of 0.026 to 0.549 with an average of 0.240. The genetic relatedness among the little millet accessions was evaluated by neighbor-joining dendrogram, which grouped all accessions into two distinct groups. The validation thus demonstrated the utility of the switchgrass EST - SSR markers in assessing genomic relationships in little millet. T he findings from this study could be useful for designing strategies for the identification of diverse germplasm for conservation and future molecular breeding programs for little millet.

  • PDF

Development of EST-SSRs and Assessment of Genetic Diversity in Little Millet (Panicum sumatrense) Germplasm

  • Ali, Asjad;Choi, Yu-Mi;Hyun, Do-Yoon;Lee, Sukyeung;Kim, Jin-Hee;Oh, Sejong;Lee, Myung Chul
    • Korean Journal of Plant Resources
    • /
    • v.30 no.3
    • /
    • pp.287-297
    • /
    • 2017
  • Little millet (Panicum sumatrense) is well known for its salt and drought stress tolerance and high nutritional value, but very limited knowledge of genetic variation and genomic information is available. In this study, a total of 779 primer pairs were designed from the 22,961 EST sequences of switchgrass (Pancium virgatum), of which 48 EST-SSR markers were developed based on the trials of transferability of these primers in little millet. The EST-SSR amplicons showed reproducible single band polymorphism and produced a total of 160 alleles with an average of 3.3 alleles per locus in 37 accessions of little millet. The average values of expected and observed heterozygosities were 0.266 and 0.123, respectively. The polymorphic information content (PIC) values were observed in range of 0.026 to 0.549 with an average of 0.240. The genetic relatedness among the little millet accessions was evaluated by neighbor-joining dendrogram, which grouped all accessions into two distinct groups. The validation thus demonstrated the utility of the switchgrass EST-SSR markers in assessing genomic relationships in little millet. The findings from this study could be useful for designing strategies for the identification of diverse germplasm for conservation and future molecular breeding programs for little millet.

Biofuel: Current Status in Production and Research

  • Yu, Ju-Kyung;Park, Soon Ki
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.121-128
    • /
    • 2010
  • Finding alternative and renewable energy sources has become an important goal for plant scientists, especially with the demand for energy increasing worldwide and the supply of fossil fuel being depleted. The most important biofuel to date is bioethanol which is produced from sugars (sucrose and starch) found in corn and sugarcane. Second generation bioethanol is targeting studies that would allow the use of the cell wall (lignocellulose) as a source of carbon by non-food plants. Plant scientists, including breeders, agronomists, physiologists and molecular biologists, are working towards the development of new and improved energy crops especially, how to design crops for bioenergy production and increased biomass generation for biofuel purposes. This review focuses on: i) the current status of first generation bioenergy production, ii) the limitations of first and second generation bioenergy, and iii) ongoing research to overcome challenging issues in second generation bioenergy.