• Title/Summary/Keyword: switchgear

Search Result 359, Processing Time 0.032 seconds

Mechanical Reliability(Life-time) Estimation for 25.8kV Solid Insulated Switchgear (25.8kV 고체절연차단기(Solid Insulated Switchgear)에 대한 기계적 신뢰성(수명) 평가)

  • Lee, Do-Hoon;Kang, Won-Jong;Lee, Seog-Won;Shin, Chul-Ho;Kim, Young-Geun;Lee, Kyu-Chul;Lee, Seung-Yeup;Kim, Ho-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2007_2008
    • /
    • 2009
  • 본 논문은 $SF_6$ 가스졀연차단기를 대체할 고체절연차단기(Solid Insulated Switchgear:SIS)의 기계적 신뢰성 평가에 대한 연구 결과이다. 최근 제정된 "25.8kV 가스 및 고체절연 친환경 개폐장치" 한전 구매규격에는 "Epoxy 고체절연물에 대한 기계적 신뢰성(수명)이 25년 이상"임을 보증할 수 있는 신뢰성 데이터를 제출해야 한다는 조항이 포함되어있다. 이에 개발된 고제절연차단기의 Epoxy 고체절연물에 대한 기계적 신뢰성(수명)이 25년 이상임을 보증할 수 있는 신뢰성 시험과 분석 기법에 대한 연구가 진행되었다.

  • PDF

Development of the replaced Eco-friendly SIS with GIS for 25.8kV class (25.8kV $SF_6$가스절연 스위치기어(GIS)를 대체한 친환경 고체절연 스위치기어(SIS) 개발)

  • Ma, Ji-Hoon;Zheng, Meng-Lei;Yoo, Lyun;Won, Sung-Yoen;Lee, Seog-Won;Kim, Young-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1219_1220
    • /
    • 2009
  • In recent years, the companies of electric power equipment for MV, HV class trend to develop that the eco-friendly insulated(solid, eco-gas, air etc.) switchgear replace with existent SF6 gas insulated switchgear by environmental problems such as global warming and soon. This paper introduces the Solid Insulated Switchgear(SIS) which is the epoxy of eco-friendly insulation material. The characteristic of SIS to introduce in this paper is as following. 1) Eco-friendly. (SF6 gas free) 2) The structure of flexible system. (Expansion) 3) The optimum design. (The Analysis of electrical & mechanical) 4) An Interface treatment between epoxy and insert. (Molding technology) This paper described about some technology for development of SIS.

  • PDF

Development of the Temperature Prediction Program for the Bus Bar of a Gas-insulated Switchgear (가스차단기 모선부의 온도상승 예측 프로그램 개발)

  • Ham, Jin-Ki;Kim, Young-Ki;Lee, Hee-Won;Kim, Jin-Soo;Song, Seok-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.169-174
    • /
    • 2003
  • The thermal design of the bus bar of a Gas-Insulated Switchgear(GIS) becomes important since the current-carrying capacity of the GIS is limited by maximum operating temperature. In order to predict temperature rise of the bus bar, a program has been developed. Various heat sources possibly generated in the bus bar are calculated in the program. To estimate temperature rises at the bus bar caused by the heat balance between the heat generation and heat transfer, the finite volume method as well as the $4^{th}$ order Runge-Kutta method has been employed. In the experiments, temperature rises at conductor, contact part and external tank are measured for full-scale gas-insulated bus bars. The comparisons of the predicted values of the heat balance calculation to those of the experiments are made. From the comparisons, it is concluded that the developed program can predict the temperature rise of the bus bar quite well.

  • PDF

The Design of Operation and Control Solution with Intelligent Inference Capability for IED based Digital Switchgear Panel (IED를 기반으로 하는 디지털 수배전반의 지적추론기반 운전제어 솔루션 설계)

  • Ko, Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.9
    • /
    • pp.351-358
    • /
    • 2006
  • In this paper, DSPOCS(Digital Switchgear-Panel Operation and Control Solution) is designed, which is the intelligent inference based operation and control solution to obtain the safety and reliability of electric power supply in substation based on IED. DSPOCS is designed as a scheduled monitoring and control task and a real-time alarm inference task, and is interlinked with BRES(Bus Reconfiguration Expert System) in the required case. The intelligent alarm inference task consists of the alarm knowledge generation part and the real-time pattern matching part. The alarm knowledge generation part generates automatically alarm knowledge from DB saves it in alarm knowledge base. On the other hand, the pattern matching part inferences the real-time event by comparing the real-time event information furnished from IEDs of substation with the patterns of the saved alarm knowledge base.; Especially, alarm knowledge base includes the knowledge patterns related with fault alarm, the overload alarm and the diagnosis alarm. In order to design the database independently in substation structure, busbar is represented as a connectivity node which makes the more generalized graph theory possible. Finally, DSPOCS is implemented in MS Visual $C^{++}$, MFC, the effectiveness and accuracy of the design is verified by simulation study to the typical distribution substation.

Arc-Extinguishing Characteristics of A Rotary-Arc Gas Circuit Breaker (자력소호 가스차단부의 소호특성)

  • Shin, Young-June;Park, Kyong-Yop;Song, Ki-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1593-1598
    • /
    • 1994
  • Recently rotary-arc, thermal expansion and their composite interrupters are widely used in the distribution power system because they have lots of advantages in making the larger interrupting capacity, the smaller size, the lighter weight and the less surge. A model interrupter of rotary-arc type, which has constant stroke and thermal expansion volume, was studied by varying the design parameters, i.e. the number of turns of the driving coil, the inner diameter of the moving contact, the gas pressure and the shape of the fixed contact for this project. Short cicuit current interrupting tests were conducted to the model interrupters by varying the requirements from 42% to 175% of the test voltage, interrupting current and transient recovery voltage for the test duty No.4 of 7.2kV 12.5kA single phase test. The pressure rise, minimum and maximum arcing times were analyzed for each model interrupter. All types of model interrupters showed good interrupting performances and sufficient design margins for the ratings.

  • PDF

Analysis of the hot gas flow field in a interrupter of UHV GCB (초고압 GCB 소호부내의 열가스 유동해석)

  • Song, K.D.;Park, K.Y.;Lee, B.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.372-375
    • /
    • 1999
  • This paper presents an arc(hot-gas flow field) analysis method in GCB. This method includes the Lorentz's force due to magnetic field, turbulent viscous effect and radiation heat transfer which are indispensable to the analysis of hot-gas flow. To verify the applicability of the Proposed method, steady state hot-Eas flow analysis within a simplified interrupter has been carried out. Inlet boundary pressure values were assumed to be 9.0atm and 12.0atm. For each inlet boundary condition, three cases of hot-gas flow field analyses were performed according to the values of arc currents which were assumed to be D.C 0.6kA. 1.0kA and 2.0kA. The results revealed that the arc radius at nozzle throat has been concentrated by increasing the pressure of nozzle upstream and that the maximum temperature of arc core has been decreased along to nozzle exit and the high temperature lesion come to be wide in nozzle downstream. From these results, it is confirmed that the proposed method will be applicable to predict the large current interruption capability of GCB.

  • PDF

A Study on the Manufacture of Gas Insulated Switchgear Spacer Using APG Molding Process (APG 주형방식을 이용한 가스절연개폐기용 절연 스페이서 제작에 관한 연구)

  • Lee, Chanyong;Bae, Jaesung;Cho, Han-Gu;Lee, Sangmook;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.386-391
    • /
    • 2022
  • The gas insulation switchgear, which is a device for protecting a power system, cannot be supported by the insulation gas itself in a charge unit stored in a metal container. Therefore, molding technology is required to manufacture a gas insulation switch spacer. The APG method injection molding simulation was performed by applying the variables obtained through the physical properties of an epoxy composite used for manufacturing an insulating spacer to a moldflow software. After varying the temperature conditions of heater in the simulation, the thermal characteristics and the degree of hardening of the spacer were analyzed, based on which the optimum process conditions are presented.