• Title/Summary/Keyword: swirl ratio

검색결과 330건 처리시간 0.027초

정상유동 장치에서 유동 특성 평가 방법에 대한 연구(5) - 평가위치의 영향 (Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(5)-Effect of Evaluation Position)

  • 조시형;엄인용
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.179-189
    • /
    • 2017
  • This paper is the fifth investigation on the methods of evaluating flow characteristics in a steady flow bench. In previous studies, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation may lead to serious problems. In addition, though the velocity profiles were improved as the measuring position went downstream, the distributions were far from ideal regardless of the valve angle and evaluation position. The eccentricities were also not sufficiently small to disregard the effect on impulse swirl meter (ISM) measurement. Therefore, the effect of these distribution and eccentricity changes according to the positions needs to be analyzed to discuss the method of flow characteristics estimation. In this context, the effects of evaluation position on the steady flow characteristics were studied. For this purpose, the swirl coefficient and swirl ratio were assessed and compared via measurement of the conventional ISM and calculation based on the velocity by particle image velocimetry(PIV) from 1.75B, 1.75 times bore position apart from the cylinder head, to the 6.00B position. The results show that the swirl coefficients by ISM strictly decrease and the curves as a function of the valve lift become smooth and linear as the measuring position goes downstream. However, the values through the calculation based on the PIV are higher at the farther position due to the approach of the tangential velocity profile to ideal. In addition, there exists an offset effect between the velocity distribution and eccentricity in the low valve lift range when the coefficients are estimated based on the swirl center. Finally, the curve of the swirl ratio by ISM and by PIV evaluation as a function the measuring position intersect around 5.00B plane except at $26^{\circ}$ valve angle.

모델 가스터빈 연소기에서 인젝터 형태에 따른 종-방향 불안정성 특성에 관한 실험적 연구 (An Experimental Study on Longitudinal Instability Characteristics with Injector Type in Model Gas Turbine Combustor)

  • 안지환;강연세;이기만
    • 한국추진공학회지
    • /
    • 제25권2호
    • /
    • pp.12-23
    • /
    • 2021
  • 이 연구에서는, 모델 가스 터빈 연소기에서 발생하는 저선회 인젝터와 강선회 인젝터의 열-음향불안정성을 비교하고 있다. 인젝터 형태에 다른 불안정한 거동의 비교를 위하여, 다양한 당량비와 연소실 길이의 광범위한 범위의 실험이 수행되었다. 실험 결과, 연소기에서 발생된 대부분의 불안정성은 종-방향 불안정성이라는 것이 확인되었다. 또한, 강선회 인젝터가 저선회 인젝터에 비하여 더 넓은 연소실 길이 영역에서 강한 연소 불안정성이 발생됨이 발견되었다. 저선회 인젝터의 막힘률은 전체적인 거동 측면에서 큰 의미를 보이지 않았다. 또한, 인젝터의 형태에 무관하게 연소실 길이가 동일한 경우에 연소 불안정성이 발생한 경우에는 불안정성의 특성이 유사함이 발견되었다.

마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part II: 비반응 유동구조에 관한 수치해석) (Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part II: Numerical Analysis on Isothermal Flow Structure))

  • 문선여;황해주;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.201-202
    • /
    • 2012
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine were numerically investigated. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with constant fuel flow rates for each nozzle. As a result, the variation in location of pilot nozzle resulted in significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus flame stability and emission characteristics might be significantly changed. The swirl angle of $45^{\circ}$ provided similar recirculating flow patterns in a wide range of equivalence ratio (0.5~1.0). Compared to the co-swirl flow, the counter-swirl flow leaded to the reduction in CTRZ and fuel-air mixing near the burner exit and a weak interaction between the pilot partially premixed flame and the lean premixed flame. With the comparison of experimental results, it was confirmed that the case of co-swirl flow and swirl $angle=45^{\circ}$ would provided an optimized combustor performance in terms of flame stability and pollutant emissions.

  • PDF

정적 연소기내의 스월 속도 변화에 따른 플라즈마 제트 점화의 연소특성 (Combustion Characteristicsof Plasma JetIgnition for Different Swirl Velocity in a Constant Volume Vessel)

  • 김문헌;박정서;이주환
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.75-83
    • /
    • 2001
  • This paper presents the evaluation of combustion characteristics of sing-hole plasma jet ignitions in comparison with conventional spark ignition for variable of swirl velocity. Plasma jet plugs are three types according to ejecting directions : center of chamber, positive and negative swirl flow direction. Experiments are carried out for equivalent ratio 1.0 of LPG-air mixture in a constant volume cylindrical vessel. Not only the flame propagation is photographed at intervals, but the pressure variation in the combustion chamber is also recorded throughout the entire combustion process. The results show that the plasma jet ignitions and spark ignition enhance the overall combustion rate by increasing the swirl velocity. The dependence of the combustion rate swirl velocity leade to the conclusion that the placma jet plug, which ejects plasma jet to the cwnter of combustion chamber is the most desirable ignitor than other plugs.

  • PDF

현장여건에 따른 터빈 유량계와 오리피스 유량계의 정확도 비교 (A Comparison of Accuracy Between a Turbine and an Orifice Meter in the Field)

  • 안승희;허재영
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.97-105
    • /
    • 1999
  • Orifice flow meters are frequently used for measuring gas flow in gas industry. However, to insure the accuracy of the measurement, a certain length of the meter run at the upstream of the flow meter is required. The objective of this study is to analyze flow measurement errors of the orifice flow meter quantitatively for shorter lengths of the meter runs than those suggested in the standard manuals with variation of diameter ratio( $\beta$ ratio) and flow rate. The test results showed that the flow measurement errors of the orifice meter were inversely proportional to the diameter ratio. In other words, when the diameter ratio is 0.3 and 0.7, the measurement error is $-7.3\%$ and $-3.5\%$, respectively. the main reason of the measurement error is due to the swirl effect from the configuration of the meter run at the upstream of the flow meter. In case the length of the meter run is shorter than that suggested in the standard manuals, the swirl effect is not removed completely and it affects the flow meter's performance. As mentioned above, the less the pipe diameter ratio, the more the flow measurement error. It means that the swirl effect on the orifice meter increases as the $\beta$ ratio decreases.

  • PDF

에어튜브의 직경비에 따른 건타입 버너의 출구 유동특성에 관한 연구 (A Study on the Exhaust Flow Characteristics of the Gun Type Burner according to the Ratio of Airtube Diameter)

  • 고동국;윤석주
    • 한국분무공학회지
    • /
    • 제20권2호
    • /
    • pp.76-81
    • /
    • 2015
  • Swirl flow has an impact on the stabilization of the flame by the recirculation flow, improvement of the combustion efficiency. The swirl flow in the gun type burner is created by the spinner which is inside the airtube that guide the combustion air. Burner has generally the combustion device composed electronic spark plug, injection nozzle, combustion device adaptor, and spinner. These inner components change the air flow behavior passing through airtube. So, this study analyzed exhaust flow characteristics of the gun type burner according to the ratio of airtube diameter. Turbulence characteristics by the spinner was mean velocity, turbulence intensity, kinetic energy, shear stress and flattness factor of the air flow of axial direction and tangential direction from the exit of the airtube.

분사각 및 스월 변화에 따른 디젤분무의 특성에 관한 수치 해석 (Numerical analysis on the characteristics of disel spray for variation of injection spray angle and swirl ratio.)

  • 정훈;차경세;박찬국
    • 한국전산유체공학회지
    • /
    • 제5권3호
    • /
    • pp.1-7
    • /
    • 2000
  • In high-pressure diesel engine, the injected fuel spray impinges on the piston cavity surface due to the short distance between the injection nozzle and the cavity wall. The behavior of the impinging spray has the great influence on the dispersion of fuel, the evaporation, and the mixture formation process. In this study, the numerical simulation using the GTT code was performed to study the gas flows, the spray behaviors, and the fuel vapor distributions in the combustion of a D.I engine for variation of spray angle and swirl ratio.

  • PDF

터보과급기를 장착한 직접분사식 디젤엔진의 배출 가스저감에 관한 실험적 연구 (An Experimental Study on the Reduction of Emissions in a Turbocheged D.I. Diesel Engine)

  • 윤준규;차경옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.726-731
    • /
    • 2000
  • This study was experimentally analyzed to improve the performance and to reduce exhaust emissions in a turbochaged D.I. diesel engine of the displacement 9.4L. In generally, the system of intake port, fuel injection and turbocharger are very important factors which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. The optimum results which is tested as available factors fur better performance and emission are as follows; the swirl ratio is 2.43, compression ratio is 16, combustion bowl is $5^{\circ}$ re-entrant type, nozzle hole diameter is ${\phi}0.28*6$, injection timing is BTDC $13^{\circ}CA$ and turbocharger is GT40 model which are selected compressor A/R 0.58 and turbine A/R 1.19.

  • PDF

단기통 엔진 헤드에서 흡기포트의 정상유동에 관한 연구 (A Study on the Steady Flow of Intake Port in Single Cylinder Engine Head)

  • 김대열;최수광
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.13-21
    • /
    • 2007
  • This paper presents characteristics of steady flow by variation of a combustion chamber and an intake port. Gas flow field inside a combustion chamber is the important factor in improving combustion stability and reduction of emission level. The flow characteristics such as flow coefficient, tumble ratio and swirl ratio are measured by the steady flow rig test with an impulse meter in this study. In the measuring, the valve lifts are varied between 1mm to 10mm. The three combustion chambers and two intake ports were applied to the steady flow apparatus in order to investigate the effect of swirl and tumble on the in-cylinder flow. As a result, tumble ratio were found to be different by variation of the combustion chambers and the intake ports. The data from the present study can be applied to design of a similar engine as basic data.

Numerical Analysis on the Effect of Parameters that Affect the Flow Rate through the Tunnel with Jet Fan Ventilation System

  • Kim, Sa-Ryang;Hur, Nahmkeon;Kim, Young-Il;Kim, Ki-Jung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권4호
    • /
    • pp.178-187
    • /
    • 2003
  • In this study, ventilation flow rate and pressure rise through a tunnel are simulated numerically using computational fluid dynamics (CFD) for various conditions such as roughness height of the surface of tunnel, swirl angle and hub/tip ratio of jet fan, and entrance and exit effects. By using a modified wall function, friction factor can be predicted with respect to the Moody chart within 10% of error for the circular pipe flow and 15% for the present tunnel. For more accurate design, the effect of the swirl angle and hub/tip ratio of jet fan, which is not included in the theoretical equation of pressure rise by jet fan needs to be considered.