• Title/Summary/Keyword: swirl atomizer

Search Result 32, Processing Time 0.024 seconds

Spray Characteristics of a Pilot Nozzle in a Counter-Swirl Type Gas Turbine Combustor (가스터빈 연소기용 대향류 선회기의 분무 특성)

  • Ko, Y.S.;Kim, M.H.;Kim, D.J.;Min, D.K.;Chung, S.H.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.42-49
    • /
    • 1996
  • The structure of sprays from a simplex type pilot nozzle atomizer is studied experimentally by measuring velocities, Sauter mean diameter, and number density. Interaction of the spray with gas-phase flow field generated from a 1 MW range industrial gas turbine combustor adopt ing a counter-swirler is investigated. Various spray behaviors are reported. Especially interest ing characteristics are the tangential motion of the spray and of the spray with swirl interaction. It shows a Rankine combined vortex type of velocity characteristics, having linear velocity profile inside the inner core whole small particles exist and rapidly decreasing velocity profiles outside. Interacting spray has relatively uniform number density profiles compared to the nozzle spray itself.

  • PDF

A Basic Study of Fuel 2-staging Y-jet Atomizer to Reduce NOx in Liquid Fuel Burner (액체 연료용 버너에서 NOx 저감을 위한 연료2단 분사 Y-jet 노즐에 관한 기초연구)

  • Song, Si-Hong;Lee, Gi-Pung;Kim, Hyeok-Je;Park, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1616-1623
    • /
    • 2001
  • A basic experimental study has been carried out to find out the design parameters of fuel 2-staging atomizers in order to reduce nitrogen oxides(NOx) rate emitted from the steam boilers used the liquid fuel. The heavy fuel oil(B-Coil) and fuel 2-staging Y-jet twin-fluid atomizers were adopted in this study. The results of this paper were obtained from the real as well as the model scale atomizers. In the case of model atomizers test, NOx reduction rate was strongly dependent on the staged fuel rate, but it was weakly dependent on the injection hole arrangement and air swirl conditions. The real scale atomizers was designed and manufactured on the base of these test results, and those was mounted and operated in the real boiler generates 185 ton steam per an hour. The reduction rate of the model and real plant was reached 10∼30% of base NOx by atomizers. but dust was sharply increased in the low O$_2$combustion region of the real plant.

Optimum Design of Dual Orifice Fuel Nozzle (이중 오리피스 연료 노즐 최적설계)

  • Lim, O-Kaung;Choi, Eun-Ho;Kim, Sung-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.407-416
    • /
    • 2007
  • Fuel spray nozzle has a critical effect on combustion characteristics. Mass flow rate and SMD(sauter mean diameter) were selected as design variables by using the experiment data of various types of duplex fuel nozzles for the swirl atomizers. The sensitivity of each design variable on the mass flow rate and SMD was analyzed and the uniformity of mass flow rate was investigated through the shape optimization of duel-orifice-type swirl atomizers. The design variables that have a little effect on the optimum design were excluded using the DOE(design of experiments) method, which enabled the optimization of sensitive design variables on mass flow rate and limit tolerance. The SMD of the research spray nozzle that was used in this study was found to be most similar to that of the calculation results using the Jasuja's SMD relationship. This study showed the specific characteristics of duel orifice type swirl atomizers and the optimization of these kinds of nozzle. This study provided the optimization design of mass flow rate and its allowable tolerance.

Effect of injection pressure on the atomization characteristics of a liquid sheet-type swirl injector for Urea-SCR system (Urea-SCR시스템 액막형 선회분사기의 분사압력변화에 따른 무특성에 관한 연구)

  • Kim, Duckjin;Yang, Donguk;Lee, Jeekeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.510-519
    • /
    • 2013
  • In this study, the spray characteristics of a pressure swirl atomizer classified into a liquid sheet-type swirl nozzle for Urea-SCR system were investigated experimentally with the variation of injection pressure. The length to diameter ratio ($l_o/d$) of the nozzle was 3.1, and the swirler was set inside the nozzle tip to give injecting fluid angular momentum. The injection duration of the nozzle was controlled by PWM (pulse width modulation) modes. The development processes of the spray were imaged by a 2-D PIV system, and the change of spray angle was measured. The atomization characteristics, including axial velocity and SMD, were measured using a 2-D PDA system with the injection pressures at room temperature and ambient pressure conditions. As the experimental results, the injection pressure had a significant impact on the spray structure showing a different shape around the spray leading edge, and the smaller SMD was observed with increasing injection pressures, which was similar to that of the previous work.

Development and Test of Gas Turbine Combustor for Ground Vehicle PPU(Primary Power Unit) (지상용 가스터빈 주동력장치(PPU) 연소기의 개발과 시험평가)

  • Lee, Dong-Hun;Lee, Kang-Yeop;Chen, Seung-Bae;Yang, Soo-Suk;Ko, Young-Sung;Choi, Seong-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.111-121
    • /
    • 2005
  • A 100kW class gas turbine combustor was developed and tested for PPU(Primary Power Unit) of ground vehicle. The combustor which employed annular-reverse type and pressure swirl atomizer was designed through 1-D analysis, 3-D thermal flow analysis and combustor performance was experimentally investigated on the combustor test rig. The test result was satisfactory. The developed combustor was also tested for environmental and endurance specification under engine adopted conditions and the application of a state-of-the-art gas turbine combustor to ground vehicle PPU turned out to be successful.

An experimental study on swirling spray flame structure by air-blast nozzle (기류분사 노즐에 의한 선회 분무 화염의 구조에 관한 실험적 연구)

  • O, Sang-Heon;Baek, Min-Su;Kim, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.473-485
    • /
    • 1997
  • Detailed experimental study has been made of air blast kerosene spray flames with and without swirl in combustion air flow. Phase-Doppler detect technique is used to measure Sauter mean diameter, axial component mean and rms velocity, size-velocity correlation, and number density. These measurements are obtained for both nonreacting and reacting cases under several stable flame conditions. The results show that the introduction of swirl to the combustion air modifies the spatial distribution of droplet size, velocity, and number density, and thus alters the flame structure. However, due to the weak swirl intensity, the overall structure of swirling flames are essentially same as that of nonswirling flames. Physical model of structure of air blast atomized spray flames is projected to show that spray flames are composed of three distinct regions: the two-phase mixture region, the main reaction and the intermittent combustion region. Near the atomizer, two phase mixture of droplet and air is formed in the core region. This dense spray region is characterized by high droplet number density and the strong convective effect. There follows the main combustion region where the main flame penetrates within the spray boundary. Main reaction region of these flames are governed by internal group combustion mode. Finally there exists the intermittent combustion region where local group burning or isolated droplet burning occurs.

An Experimental Study on the Spray Characteristics of Deflector Nozzle (충돌형 노즐의 분무특성에 관한 실험적 연구)

  • Kim K. H.;Choi Y. H.;Yoon S. J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.291-294
    • /
    • 2002
  • This study describes the external spray characteristics of deflector nozzle such as the breakup procedures of liquid sheet, spray angle, discharge coefficient and bubble behaviors of spray and SMD at deflector nozzle. In order to visualize the spray behaviors shadow graphy technique were used. According to the increase of injection pressure, development of the spray passes through the dribbling, distoted jet, closed bubble due to the contraction by surface tension forces, the bubble opens into hollow tulip shape, and the curved surface straightened to form a conical sheet like as the simplex swirl atomizer. Spray cone angle was nearly 90 deg. Variations of SMD were examined in order to describe the dependency of SMD on the injection pressure and orifice diameter. The shape of deflector and oriffice diameter had an effect on the discharge coefficient.

  • PDF

External Spray Characteristics of Deflector Nozzle (충돌형 노즐의 분무형상 연구)

  • Kim, K.H.;Choi, Y.H.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.29-35
    • /
    • 2002
  • This study describes the external spray characteristics of deflector nozzle such as the breakup procedures of liquid sheet, spray angle, breakup length and bubble behaviors of spray at deflector nozzle. In order to visualize the spray behaviors shadow graphy technique were used. According to the increase injection pressure, deveopment of the spray passes through the dribbling, distoted jet, closed bubble due to the contraction by form a conical sheet like as the simplex swirl atomizer. As trying the analysis of the ratio of bubble length and width it was found that the ratios is comparable. Spray cone angle was nearly $90^{\circ}$.

  • PDF

An experimental study on the characteristics of spray pattern by the Airblast Atomizer (공기충돌형 연료분사장치의 분무특성에 관한 실험적 연구)

  • Kim, Hyun-Joong;Han, Jae-Seob;Kim, Yoo;Min, Seong-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.24-29
    • /
    • 1998
  • An experimental study was carried out to investigate the characteristics of spray pattern such as discharge coefficient, spray angle, and mass distribution for two-fluid airblast swirl injector, within the range of fluid supply pressure 0~13kg/$\textrm{cm}^2$. In general atomization is promoted with increasing total gas mass flow and performance of the splay pattern was more stable when radial mass flow was greater than axial mass flow, radial swirler was better than Axial swirler for atomization. Equivalent spray angle did not change with water mass flow except for the condition of 3kg/$\textrm{cm}^2$ and showed the same for the gas mass flow. Mass distribution from the patternator shows that maximum value of the distribution were lowered but distributed larger area when gas flow rate increased. Center of mass position did not change with increasing water mass flow.

  • PDF

Spray Charateristics of Water/Oil Emulsified Fuel in Pressure-Swirl Nozzle (압력선회노즐에서 물-기름 유화연료의 분무특성)

  • Rhim, J.H.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 2000
  • The beneficial aspects of applying emulsion fuels to combustion systems may be due to the changes of fuel properties which lead to the enhanced atomization characteristics. The spray characteristics of water/oil emulsified fuel injected from the pressure-swirl(simplex) atomizer using for oil burner were investigated. Four different water contents from 10 to 40 % by volume at 10% increment were prepared by mixing with the different contents of surfactants. Total amount of surfactant used was varied from 1 to 3 % by volume. This study demonstrates the influence of water and surfactant contents of emulsified fuel, injection pressure on the spray characteristics, i.e. Sauter mean diameter(SMD) and spray angle. The drop size distribution of the emulsified fuel spray was measured with a Malvem particle sizer. In order to measure the spray angle, the digital image processing was employed by capturing multiple images of the spray with 3-CCD digital video camera. It was evident that the addition of water and surfactant changes fuel properties which are the key parameters influencing the atomization of the spray. The increase in surfactant content results in the decrease of SMD and the increase in spray angle. The droplets decease with increase in injection pressure, but the influence of injection pressure in this experimental condition was less important than expected. The more viscous fuel with the increase of water content exhibits the larger droplets in the centerline of the spray, and the less viscous fuel in the outer edges of the spray. The increase in axial position from the nozzle causes the spray angle to decrease. The spray angle decreases with increase in water content. This is due to increase in viscosity with increase in water content.

  • PDF