• Title/Summary/Keyword: swimming speed

Search Result 84, Processing Time 0.024 seconds

A Case Study of Assessment of the Ecological Connectivity of Cross Sectional Structures in the Flowing Stream (하천 내 횡단구조물에 대한 수생태 연속성 평가 방안에 대한 연구)

  • Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.320-326
    • /
    • 2020
  • The present study aimed to assess the longitudinal connectivity owing to migrant characteristics of the target fish. The study area was Wonju-cheon Stream, and the target species were Zacco platypus and Minnows. The HEC-RAS model was used for the computation of the flow, and the ICE (Information sur la Continuite Ecologique) method was used to analyze the longitudinal connectivity. The longitudinal connectivity was assessed using the minimum overflow height, velocity, and depth of the cross sectional structure of a plunge pool and considering the swimming speed of the target fish. Simulation results indicated that the longitudinal connectivity scores for the Zacco platypus and Minnows were approximately 76 and 23, respectively.

The Optomotor Response of Killifish and Yellowtail (송사리와 방어의 시각운동반응)

  • Jang, Choong-sik;Lee, Byoung-gee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 1983
  • The authors carried out an experiment to find the optomotor response of killifish, Orizias latipes(TEMMINCK et SCHLEGEL) and Yellowtail, Seriola quinqueradiata (TEMMINCK et SCHLEGEL) according to the colors of the netting pattern on the visual screen and the revolving velocities of the visual screen. The experimental water tank was made of 0.5 cm thick transparent acryl in the cylindrical shape (100R$\times$42H cm). The water level in the tank was maintained 30cm high from the bottom. The colors of the netting pattern (mesh size: 19.1cm, width of netting twine: 1.5cm, hanging ratio: 84%) on the three visual screens were black, red and green respectively. The revolving velocities of the visual screen were controlled by pulley, bevel gear and variable speed motor in three steps; slow (15.0cm/sec), middle (37.4cm/sec) and high (62.9cm/sec). The fish was put into the water tank before each experiment and released in it for 30 minutes in order to acclimatize itself to the tank. The visual screen was revolved for 4 minutes per each experiment, at first the fish was released for 1 minute, and then the behavior of the fish was observed for 3 minutes. In the course of clockwise and counter clockwise experiments, 10 minutes-pause was given for the rest. The behavior of the fish was observed by video system, and rounding number and swimming speed of the fish were analysed. The results obtained are as follows: (1) Optomotor response rate of Killifish and yellowtail were 95% and 94% respectively. (2) Response of the fish according to the colors of the netting pattern on the three visual screens was best in black, and second in red and third in green. (3) Response of the fish according to the revolving velocities of the visual screen was best in high speed, and second in middle speed and third in slow speed.

  • PDF

Analysis on underwater stability of the octagonal pillar type fish cage and mooring system (팔각기둥형 가두리 시스템의 수중 안정성 분석)

  • Yang, Yong-Su;Park, Seong-Wook;Lee, Kyounghoon;Lee, Dong-Gil;Jeong, Seong-Jae;Bae, Jaehyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • The sea cage in marine aquaculture might be varied such as on the stability and shape in the open sea by environmental factors. To evaluate the stability of net cage structures in the open sea, the physical and numerical modeling techniques were applied and compared with field observations. This study was carried out to analyse the stability and the volume loss which would have an effect on the fish swimming behavior in the octagonal pillar type fish cage under the open sea. As a results, the volume loss ratio of the fish cage as measured using a depth sensor was indicated a value of the 30.3% under the current velocity (1.1m/s). The fish cage should be consisted of a concrete block with a weight over 10 tons, a mooring rope diameter over 28mm PP, and a shackle of 25mm under the current speed of 1m/sec for reasonable stability.

Improving of the Fishing Gear and Development of the Automatic Operation System in the Anchovy Boat Seine- II Analysis of escaping behaviour of anchovy in relation to underwater light and towing flow velocity (기선권현망어업의 어구개량과 자동화조업시스템 개발- II 수중광 및 예망유속과 멸치의 도피반응 행동 분석)

  • 김용해;장충식;안영수;김형석
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.78-84
    • /
    • 2001
  • Escape behaviour of the anchovy (Engralius japonica, total length 4-7cm) at the inside wing net and bag net in the anchovy boat seine was observed by underwater video camera in order to clarify the relationship between visual stimulus of the gear or relative water flow inside gear and reacting behaviour. The vertical attenuation coefficient of underwater illuminance in the offshore of Keoje island and Tongyoung was ranged from 0.24 to 1.03 and it could be affect visual range and visual contrast of the fishing gear. The relative water flow at the joint part between inside wing and bagnet while towing was 1.5 times higher than at the middle part of inside wing or fore part of bag net, but it was estimated under than maximum swimming speed of 4-7 cm anchovy. The mean escaping number of anchovy from end part of inside wing of 30 cm mesh to out side for a minute within visual range of video camera was 455 and anchovy swimming forward from bag net through flapper was 308. These results revealed anchovy could escape as voluntary response in spite of higher visual stimulus or higher water flow.

  • PDF

A Study on the Behaviour of Fish Schools in the Process of Catch of the Purse Seine Fishing Method (선망어법의 어획과정에 있어서 어군행동에 관한 연구)

  • Park, Jeong-Sik;Kim, Seok-Jong;Kim, Sam-Gon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.173-182
    • /
    • 1997
  • This study is a basic research in purse seine fishery : on the behaviour of fish schools of tilapia Tilapia mossambica in the process of catch of the purse seine fishing method. The experiment was carried out for the mackerel purse seine which using of power block by fishing fleet system in the near sea of Cheju Island and as a forecast in the near future on the purse seine fishing, using of triplex net winch by one boat system in the near sea of Norway. These model purse seines were made of the scale of 1/180 of its full scale. The model purse seine test on the escaping behaviour of fish school by gap, area reducing of gap and tension of purse line was carried out in the stagnant water of experimental water tank. Designing and testing for the model purse seines were based on the Tauti's law. The results obtained were as follows : 1. When the time for the completing of pursing was 20 minutes, average swimming speed of fish school through a gap was 9.71cm/sec for powerblock seine and 9.97cm/sec for triplex seine. 2. In the case of pursing time in actual value was 20minutes, at 50 percent of the pursing, swimming behaviour of fish school in purse seine was 10% to I section, 80% to II section, 10% to III sectional direction for powerblock seine and a similar tendency for triplex seine. 3. In the case of pursing time in actual value was 20 minutes, at the time of 10 minutes have proceeded since then, area reducing rate of gap of the seine in projected front view was 63.5% for powerblock seine and 67.5% for triplex seine. 4. In the case of pursing time in actual value was 20 minutes, escaping rate of fish school by gap in projected front view was 70% for powerblock seine and 30% for triplex seine. Maximum tension of purse line was about 8.1 tons for powerblock seine and about 8.3 tons for triplex seine.

  • PDF

Analysis of Pseudomonas aeruginosa Motility in Microchannels (미세유로 내에서 Pseudomonas aeruginosa의 유영 운동 분석)

  • Jang, Sung-Chan;Jeong, Heon-Ho;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.743-748
    • /
    • 2012
  • This study presents the effects of micro-geometries on the swimming behavior of Pseudomonas aeruginosa. First, we have measured parameters of single-cell motility including cell speed, run duration time, and tumble angle under two dimensional space. The results are used to calculate motility coefficients in the width of microchannels ranging from 10 to $100{\mu}m$. Since the single-cell motility parameters measured depend on the interaction of flagella with the microchannel wall, the duration time of the running cell in restricted geometries is distinctively different. Therefore, the motility of bacteria is decreased by restricted geometries. This study suggests that microfluidic approach is useful tool for the analysis of bacterial motility under the restricted space and rapid analytical tool.

Effect of the characteristics of buoy on the holding power of trapnet (부이의 특성이 통발어구의 고정력에 미치는 영향)

  • LEE, Gun-Ho;CHO, Sam-Kwang;KIM, In-Ok;CHA, Bong-Jin;JUNG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • In this paper, numerical modeling is conducted to analyze the tension of an anchor line by varying the size and drag coefficient of a buoy when the trapnet is influenced by the wave and the current simultaneously. A mass-spring model was used to analyze the behavior of trapnet underwater under the influence of waves and current. In the simulation of numerical model, wave height of 3, 4, 5 and 6 m, a period of 4.4 s, and the flow speed of 0.7 m/s were used for the wave and current condition. The drag coefficients of buoy were 0.8, 0.4 and 0.2, respectively. The size of buoy was 100, 50 and 25% based on the cylindrical buoy ($0.0311m^3$) used for swimming crab trap. The drag coefficient of the trapnet, the main model for numerical analysis, was obtained by a circular water channel experiment using a 6-component load cell. As a result of the simulation, the tension of the anchor line decreased proportional to buoy's drag coefficient and size; the higher the wave height, the greater the decrease rate of the tension. When the buoy drag coefficient and size decreased to one fourth, the tension of the anchor line decreased to a half and the tension of the anchor line was lower than the holding power of the anchor even at 6 m of wave height. Therefore, reducing the buoy drag coefficient and size appropriately reduces the trapnet load from the wave, which also reduces the possibility of trapnet loss.

Study on the development of trawl escapement device (트롤 탈출장치의 개발에 관한 연구)

  • Cho, Sam-Kwang;An, Heui-Chun;Shin, Jong-Keun;Yang, Yong-Su;Park, Cang-Doo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.4
    • /
    • pp.241-247
    • /
    • 2005
  • The aim of this study was to develop a trawl escapement device which can improve the survival rate of young fishes passed through trawl codend. The sea experiments according to the bar space of the device and bar materials were carried out to decide the bar space and device materials in Korean southern sea and off Cheju island. Stainless pipes and MC bars were used to test the efficiency of escapement device materials. Although escapement rates of MC bar for main species were a little higher compare with stainless pipe, the efficiency of device for stainless pipe was better than MC bar. Escapement devices of sort-K type and grid panel type were also compared. Escapement rates of redlip croaker(Pseudosciaena polyactis), blackthroat seaperch(Doederleinia berycoides) and finespotted flounder (Pleuronichthys cornutus) showed 61.7%, 2.0% and 2.7% on the sort-x type and 69.9%, 1.1% and 2.0% for the grid panel type but the difference was little. Fishes under 20mm head width and fishes which swimming speed is so slow compared with body length could not go through well the device. Escapement rates according to the bar space were estimated using grid panel type. The rates of redlip croaker(Pseudosciaena polyactis) for the bar space of 20mm, 25mm, 35mm were increased as 60.3%, 61.0% and 77.8%, and 9.8%, 16.4% and 45.6% for horse mackere1(Trachurus japonicus), respectively.

Application of Physical Habitat Simulation System (PHABSIM) in the Reach of Small Dam Removal for Zacco platypus (피라미에 대한 보 철거 구간에서의 물리서식처 모의(PHABSIM) 적용)

  • Im, Dong-Kyun;Jung, Sang-Hwa;Ahn, Hong-Kyu;Kim, Kyu-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.909-920
    • /
    • 2007
  • River restoration and environmental improvement projects have been peformed by social needs, therefore methodology for evaluating such projects must be provided. The PHysical HABitat SIMulation system (PHABSIM) is proposed as a tool for the assessment of hydraulic habitat suitability for aquatic species related to flow regime in river. This study evaluates the change of physical habitat for Zacco platypus according to small dam removal and the model suitability by applying PHABSIM to the reach where small dam was removed. It is shown that the physical habitat is generally increased and improved where the small dam was removed. However, physical habitat in the spawning stage that has a weak swimming speed is decreased by increased flow velocity in the upstream area of small dam, so proper countermeasure for that condition should be needed. Consequently, PHABSIM can be effectively used to provide methodology for assessment and necessity of various river projects including a removal of out-aged hydraulic structures.

Effect of Wearing Ankle Weights on Underwater Treadmill Walking

  • Park, Que Tae;Kim, Suk Bum;O'Sullivan, David
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.105-112
    • /
    • 2019
  • Objective: The main purpose of this study was to investigate the effects of wearing an ankle weight belt while performing gait in water by focusing on the effect of using ankle weights have on the gait kinematics and the muscle activities for developing optimum training strategies. Method: A total of 10 healthy male university students were recruited for the study. Each participant was instructed to perform 3 gait conditions; normal walking over ground, walking in water chest height, and walking in water chest height while using ankle weights. All walking conditions were set at control speed of $4km/h{\pm}0.05km/h$. The depth of the swimming pool was at 1.3 m, approximately chest height. The motion capture data was recorded using 6 digital cameras and the EMG was recorded using waterproof Mini Wave. From the motion capture data, the following variables were calculated for analysis; double and single support phase (s), swing phase (s), step length (%height), step rate (m/s), ankle, knee, and hip joint angles ($^{\circ}$). From the electromyography the %RVC of the lower limb muscles medial gastrocnemius, rectus femoris, erector spinae, semitendinosus, tibialis anterior, vastus lateralis oblique was calculated. Results: The results show significant differences between the gait time, and step length between the right and left leg. Additionally, the joint angular velocities and gait velocity were significantly affected by the water resistance. As expected, the use of the ankle weights increased all of the lower leg maximum muscle activities except for the lower back muscle. Conclusion: In conclusion, the ankle weights can be shown to stimulate more muscle activity during walking in chest height water and therefore, may be useful for rehabilitation purposes.