DOI QR코드

DOI QR Code

미세유로 내에서 Pseudomonas aeruginosa의 유영 운동 분석

Analysis of Pseudomonas aeruginosa Motility in Microchannels

  • Jang, Sung-Chan (Department of Chemical Engineering, Chungnam National University) ;
  • Jeong, Heon-Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 투고 : 2012.02.12
  • 심사 : 2012.03.20
  • 발행 : 2012.08.01

초록

본 논문에서는 미세 환경이 Pseudomonas aeruginosa의 운동성에 주는 영향을 조사하기 위하여 다양한 크기의 미세유로 내에서 박테리아의 운동성을 분석하였다. 본 논문에서는 미세유체 칩을 사용하여 2차원 공간을 만들며, $10{\sim}100{\mu}m$ 너비의 채널 안에서 단일 박테리아의 운동 변수인 이동속도, 'run'운동 지속시간, 'tumble' 각도를 측정하였고 각 미세유로 내에서 박테리아의 운동을 표현할 수 있는 물리적 상수인 random motility coefficient를 구하였다. 상기의 물리적 측정치를 분석한 결과, 박테리아는 공간제약이 있는 경우 편모의 운동이 채널의 벽의 영향으로 인하여 회전 운동에 영향을 받게 되고, 'run' 운동 지속 시간이 짧아지는 것을 확인하였다. 따라서, 공간의 제한이 박테리아의 운동성을 감소시킴을 알 수 있었다. 본 연구의 결과는 박테리아의 운동성을 쉽고 정확하게 분석할 수 있는 측정 방법으로 널리 활용될 것으로 기대된다.

This study presents the effects of micro-geometries on the swimming behavior of Pseudomonas aeruginosa. First, we have measured parameters of single-cell motility including cell speed, run duration time, and tumble angle under two dimensional space. The results are used to calculate motility coefficients in the width of microchannels ranging from 10 to $100{\mu}m$. Since the single-cell motility parameters measured depend on the interaction of flagella with the microchannel wall, the duration time of the running cell in restricted geometries is distinctively different. Therefore, the motility of bacteria is decreased by restricted geometries. This study suggests that microfluidic approach is useful tool for the analysis of bacterial motility under the restricted space and rapid analytical tool.

키워드

과제정보

연구 과제 주관 기관 : 교육과학기술부, 한국연구재단

참고문헌

  1. Ringen, L. M. and Drake, C. H., "A Study of the Incidence of Pseudomonas aeruginosa from Various Natural Sources," J. Bacteriol., 64, 841-845(1952).
  2. Remold, S. K., Brown, C. K., Farris, J. E., Hundley, T. C., Perpich, J. A. and Purdy, M. E., "Differential Habitat Use and Niche Partitioning by Pseudomonas Species in Human Homes," Microb. Ecol., 62, 505-517(2011). https://doi.org/10.1007/s00248-011-9844-5
  3. Ranjard, L. and Richaume, A. S., "Quantitative and Qualitative Microscale Distribution of Bacteria in Soil," Res. Microbiol., 152, 707-716(2001). https://doi.org/10.1016/S0923-2508(01)01251-7
  4. Saye, D. J., Ogunseitan, O. A., Sayler, G. S. and Miller, R. V., "Transduction of Linked Chromosomal Genes between Pseudomonas- Aeruginosa Strains during Incubation Insitu in a Fresh-Water Habitat," Appl. Environ. Microbiol., 56, 140-145(1990).
  5. Wiehlmann, L., Munder, A., Adams, T., Juhas, M., Kolmar, H., Salunkhe, P. and Tummler, B., "Functional Genomics of Pseudomonas aeruginosa to Identify Habitat-specific Determinants of Pathogenicity," Int. J. Med. Microbiol., 297, 615-623(2007). https://doi.org/10.1016/j.ijmm.2007.03.014
  6. Wang, Y., Hammes, F., Boon, N. and Egli, T., "Quantification of the Filterability of Freshwater Bacteria Through 0.45, 0.22, and 0.1 mu m Pore Size Filters and Shape-dependent Enrichment of Filterable Bacterial Communities," Environ. Sci. Technol., 41, 7080-7086(2007). https://doi.org/10.1021/es0707198
  7. Ahmed, T., Shimizu, T. S. and Stocker, R., "Microfluidics for Bacterial Chemotaxis," Integr. Biol., 2, 604-629(2010). https://doi.org/10.1039/c0ib00049c
  8. Park, A., Jeong, H. H., Lee, J., Kim, K. P. and Lee, C. S., "Effect of Shear Stress on the Formation of Bacterial Biofilm in a Microfluidic Channel," Biochip J., 5, 236-241(2011). https://doi.org/10.1007/s13206-011-5307-9
  9. Kim, K. P., Kim, Y. G., Choi, C. H., Kim, H. E., Lee, S. H., Chang, W. S. and Lee, C. S., "In situ Monitoring of Antibiotic Susceptibility of Bacterial Biofilms in a Microfluidic Device," Lab Chip, 10, 3296-3299(2010). https://doi.org/10.1039/c0lc00154f
  10. Jeong, H. H., Lee, S. H., Kim, J. M., Kim, H. E., Kim, Y. G., Yoo, J. Y., Chang, W. S. and Lee, C. S., "Microfluidic Monitoring of Pseudomonas aeruginosa Chemotaxis Under the Continuous Chemical Gradient," Biosens. Bioelectron., 26, 351-356(2010). https://doi.org/10.1016/j.bios.2010.08.006
  11. Huh, Y. S., Jeon, S. J., Lee, E. Z., Park, H. S. and Hong, W. H., "Microfluidic Extraction Using two Phase Laminar Flow for Chemical and Biological Applications," Korean J. Chem. Eng., 28, 633-642(2011). https://doi.org/10.1007/s11814-010-0533-8
  12. Sia, S. K. and Whitesides, G. M., "Microfluidic Devices Fabricated in Poly(dimethylsiloxane) for Biological Studies," Electrophoresis, 24, 3563-3576(2003). https://doi.org/10.1002/elps.200305584
  13. DiLuzio, W. R., Turner, L., Mayer, M., Garstecki, P., Weibel, D. B., Berg, H. C. and Whitesides, G. M., "Escherichia coli Swim on the Right-hand Side," Nature, 435, 1271-1274(2005). https://doi.org/10.1038/nature03660
  14. Mannik, J., Driessen, R., Galajda, P., Keymer, J. E. and Dekker, C., "Bacterial Growth and Motility in Sub-micron Constrictions," Proc. Natl. Acad. Sci. U.S.A., 106, 14861-14866(2009). https://doi.org/10.1073/pnas.0907542106
  15. Binz, M., Lee, A. P., Edwards, C. and Nicolau, D. V., "Motility of Bacteria in Microfluidic Structures," Microelectron. Eng., 87, 810-813(2010). https://doi.org/10.1016/j.mee.2009.11.080
  16. Di Leonardo, R., Angelani, L., Dell'arciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M. P., Mecarini, F., De Angelis, F. and Di Fabrizio, E., "Bacterial Ratchet Motors," Proc. Natl. Acad. Sci. U.S.A., 107, 9541-9545(2010). https://doi.org/10.1073/pnas.0910426107
  17. Kaehr, B. and Shear, J. B., "High-throughput Design of Microfluidics Based on Directed Bacterial Motility," Lab Chip, 9, 2632-2637(2009). https://doi.org/10.1039/b908119d
  18. Hulme, S. E., DiLuzio, W. R., Shevkoplyas, S. S., Turner, L., Mayer, M., Berg, H. C. and Whitesides, G. M., "Using Ratchets and Sorters to Fractionate Motile Cells of Escherichia coli by Length," Lab Chip, 8, 1888-1895(2008). https://doi.org/10.1039/b809892a
  19. Maki, N., Gestwicki, J. E., Lake, E. M., Kiessling, L. L. and Adler, J., "Motility and Chemotaxis of Filamentous Cells of Escherichia coli," J. Bacteriol., 182, 4337-4342(2000). https://doi.org/10.1128/JB.182.15.4337-4342.2000
  20. Turner, L., Zhang, R. J., Darnton, N. C. and Berg, H. C., "Visualization of Flagella During Bacterial Swarming," J. Bacteriol., 192, 3259-3267(2010). https://doi.org/10.1128/JB.00083-10
  21. Berg, H. C. and Anderson, R. A., "Bacteria Swim by Rotating Their Flagellar Filaments," Nature, 245, 380-382(1973). https://doi.org/10.1038/245380a0
  22. Yuan, J., Fahrner, K. A., Turner, L. and Berg, H. C., "Asymmetry in the Clockwise and Counterclockwise Rotation of the Bacterial Flagellar Motor," Proc. Natl. Acad. Sci. U.S.A., 107, 12846-12849(2010). https://doi.org/10.1073/pnas.1007333107
  23. Berg, H. C., E. coli in motion, Springer, New York(2004).
  24. Li, G. L., Tam, L. K. and Tang, J. X., "Amplified Effect of Brownian Motion in Bacterial Near-surface Swimming," Proc. Natl. Acad. Sci. U.S.A., 105, 18355-18359(2008). https://doi.org/10.1073/pnas.0807305105
  25. Thar, R. and Kuhl, M., "Bacteria are Not Too Small for Spatial Sensing of Chemical Gradients: An Experimental Evidence," Proc. Natl. Acad. Sci. U.S.A., 100, 5748-5753(2003). https://doi.org/10.1073/pnas.1030795100
  26. Maeda, K., Imae, Y., Shioi, J. I. and Oosawa, F., "Effect of Temperature on Motility and Chemotaxis of Escherichia coli," J. Bacteriol., 127, 1039-1046(1976).
  27. Frymier, P. D., Ford, R. M., Berg, H. C. and Cummings, P. T., "Three-dimensional Tracking of Motile Bacteria Near a solid Planar Surface," Proc. Natl. Acad. Sci. U.S.A., 92, 6195-6199(1995). https://doi.org/10.1073/pnas.92.13.6195
  28. Berg, H. C., "How to Track Bacteria," Rev. Sci. Instrum., 42, 868-871(1971). https://doi.org/10.1063/1.1685246
  29. Jeon, H., Lee, Y., Jin, S., Koo, S., Lee, C. S. and Yoo, J. Y., "Quantitative Analysis of Single Bacterial Chemotaxis Using a Linear Concentration Gradient Microchannel," Biomed. Microdevices, 11, 1135-1143(2009). https://doi.org/10.1007/s10544-009-9330-8
  30. Frymier, P. D. and Ford, R. M., "Analysis of Bacterial Swimming Speed Approaching a Solid-liquid Interface," AIChE J., 43, 1341-1347(1997). https://doi.org/10.1002/aic.690430523
  31. Liu, Z. and Papadopoulos, K. D., "A Method for Measuring Bacterial Chemotaxis Parameters in a Microcapillary," Biotechnol. Bioeng., 51, 120-125(1996). https://doi.org/10.1002/(SICI)1097-0290(19960705)51:1<120::AID-BIT14>3.3.CO;2-D
  32. Berg, H. C. and Brown, D. A., "Chemotaxis in Escherichia coli Analysed by Three-dimensional Tracking," Nature, 239, 500-504(1972). https://doi.org/10.1038/239500a0
  33. Othmer, H. G., Dunbar, S. R. and Alt, W., "Models of Dispersal in Biological Systems," J. Math. Biol., 26, 263-298(1988). https://doi.org/10.1007/BF00277392
  34. Lewus, P. and Ford, R. M., "Quantification of Random Motility and Chemotaxis Bacterial Transport Coefficients Using Individual- cell and Population-scale Assays," Biotechnol. Bioeng., 75, 292-304(2001). https://doi.org/10.1002/bit.10021
  35. Ramia, M., Tullock, D. L. and Phan-Thien, N., "The Role of Hydrodynamic Interaction in the Locomotion of Microorganisms," Biophys. J., 65, 755-778(1993). https://doi.org/10.1016/S0006-3495(93)81129-9
  36. Biondi, S. A., Quinn, J. A. and Goldfine, H., "Random Motility of Swimming Bacteria in Restricted Geometries," AIChE J., 44, 1923-1929(1998). https://doi.org/10.1002/aic.690440822

피인용 문헌

  1. Stagnation of Droplet for Efficient Merging in Microfluidic System vol.52, pp.1, 2014, https://doi.org/10.9713/kcer.2014.52.1.106
  2. Optimization of microwell-based cell docking in microvalve integrated microfluidic device vol.8, pp.3, 2014, https://doi.org/10.1007/s13206-014-8309-6
  3. 온도 구배가 있는 미세유체 장치를 이용한 극지 미생물의 형태 변화 분석 vol.29, pp.4, 2012, https://doi.org/10.7841/ksbbj.2014.29.4.278