Browse > Article
http://dx.doi.org/10.9713/kcer.2012.50.4.743

Analysis of Pseudomonas aeruginosa Motility in Microchannels  

Jang, Sung-Chan (Department of Chemical Engineering, Chungnam National University)
Jeong, Heon-Ho (Department of Chemical Engineering, Chungnam National University)
Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Publication Information
Korean Chemical Engineering Research / v.50, no.4, 2012 , pp. 743-748 More about this Journal
Abstract
This study presents the effects of micro-geometries on the swimming behavior of Pseudomonas aeruginosa. First, we have measured parameters of single-cell motility including cell speed, run duration time, and tumble angle under two dimensional space. The results are used to calculate motility coefficients in the width of microchannels ranging from 10 to $100{\mu}m$. Since the single-cell motility parameters measured depend on the interaction of flagella with the microchannel wall, the duration time of the running cell in restricted geometries is distinctively different. Therefore, the motility of bacteria is decreased by restricted geometries. This study suggests that microfluidic approach is useful tool for the analysis of bacterial motility under the restricted space and rapid analytical tool.
Keywords
Microenvironment; Random Walk; Microchannel; Motility; Pseudomonas aeruginosa;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahmed, T., Shimizu, T. S. and Stocker, R., "Microfluidics for Bacterial Chemotaxis," Integr. Biol., 2, 604-629(2010).   DOI   ScienceOn
2 Park, A., Jeong, H. H., Lee, J., Kim, K. P. and Lee, C. S., "Effect of Shear Stress on the Formation of Bacterial Biofilm in a Microfluidic Channel," Biochip J., 5, 236-241(2011).   DOI   ScienceOn
3 Ringen, L. M. and Drake, C. H., "A Study of the Incidence of Pseudomonas aeruginosa from Various Natural Sources," J. Bacteriol., 64, 841-845(1952).
4 Remold, S. K., Brown, C. K., Farris, J. E., Hundley, T. C., Perpich, J. A. and Purdy, M. E., "Differential Habitat Use and Niche Partitioning by Pseudomonas Species in Human Homes," Microb. Ecol., 62, 505-517(2011).   DOI   ScienceOn
5 Kim, K. P., Kim, Y. G., Choi, C. H., Kim, H. E., Lee, S. H., Chang, W. S. and Lee, C. S., "In situ Monitoring of Antibiotic Susceptibility of Bacterial Biofilms in a Microfluidic Device," Lab Chip, 10, 3296-3299(2010).   DOI   ScienceOn
6 Jeong, H. H., Lee, S. H., Kim, J. M., Kim, H. E., Kim, Y. G., Yoo, J. Y., Chang, W. S. and Lee, C. S., "Microfluidic Monitoring of Pseudomonas aeruginosa Chemotaxis Under the Continuous Chemical Gradient," Biosens. Bioelectron., 26, 351-356(2010).   DOI   ScienceOn
7 Kaehr, B. and Shear, J. B., "High-throughput Design of Microfluidics Based on Directed Bacterial Motility," Lab Chip, 9, 2632-2637(2009).   DOI   ScienceOn
8 Hulme, S. E., DiLuzio, W. R., Shevkoplyas, S. S., Turner, L., Mayer, M., Berg, H. C. and Whitesides, G. M., "Using Ratchets and Sorters to Fractionate Motile Cells of Escherichia coli by Length," Lab Chip, 8, 1888-1895(2008).   DOI   ScienceOn
9 Maki, N., Gestwicki, J. E., Lake, E. M., Kiessling, L. L. and Adler, J., "Motility and Chemotaxis of Filamentous Cells of Escherichia coli," J. Bacteriol., 182, 4337-4342(2000).   DOI   ScienceOn
10 Turner, L., Zhang, R. J., Darnton, N. C. and Berg, H. C., "Visualization of Flagella During Bacterial Swarming," J. Bacteriol., 192, 3259-3267(2010).   DOI   ScienceOn
11 Berg, H. C. and Anderson, R. A., "Bacteria Swim by Rotating Their Flagellar Filaments," Nature, 245, 380-382(1973).   DOI   ScienceOn
12 Yuan, J., Fahrner, K. A., Turner, L. and Berg, H. C., "Asymmetry in the Clockwise and Counterclockwise Rotation of the Bacterial Flagellar Motor," Proc. Natl. Acad. Sci. U.S.A., 107, 12846-12849(2010).   DOI   ScienceOn
13 Berg, H. C., E. coli in motion, Springer, New York(2004).
14 Li, G. L., Tam, L. K. and Tang, J. X., "Amplified Effect of Brownian Motion in Bacterial Near-surface Swimming," Proc. Natl. Acad. Sci. U.S.A., 105, 18355-18359(2008).   DOI   ScienceOn
15 Thar, R. and Kuhl, M., "Bacteria are Not Too Small for Spatial Sensing of Chemical Gradients: An Experimental Evidence," Proc. Natl. Acad. Sci. U.S.A., 100, 5748-5753(2003).   DOI   ScienceOn
16 Maeda, K., Imae, Y., Shioi, J. I. and Oosawa, F., "Effect of Temperature on Motility and Chemotaxis of Escherichia coli," J. Bacteriol., 127, 1039-1046(1976).
17 Mannik, J., Driessen, R., Galajda, P., Keymer, J. E. and Dekker, C., "Bacterial Growth and Motility in Sub-micron Constrictions," Proc. Natl. Acad. Sci. U.S.A., 106, 14861-14866(2009).   DOI   ScienceOn
18 Huh, Y. S., Jeon, S. J., Lee, E. Z., Park, H. S. and Hong, W. H., "Microfluidic Extraction Using two Phase Laminar Flow for Chemical and Biological Applications," Korean J. Chem. Eng., 28, 633-642(2011).   DOI   ScienceOn
19 Sia, S. K. and Whitesides, G. M., "Microfluidic Devices Fabricated in Poly(dimethylsiloxane) for Biological Studies," Electrophoresis, 24, 3563-3576(2003).   DOI   ScienceOn
20 DiLuzio, W. R., Turner, L., Mayer, M., Garstecki, P., Weibel, D. B., Berg, H. C. and Whitesides, G. M., "Escherichia coli Swim on the Right-hand Side," Nature, 435, 1271-1274(2005).   DOI   ScienceOn
21 Binz, M., Lee, A. P., Edwards, C. and Nicolau, D. V., "Motility of Bacteria in Microfluidic Structures," Microelectron. Eng., 87, 810-813(2010).   DOI   ScienceOn
22 Othmer, H. G., Dunbar, S. R. and Alt, W., "Models of Dispersal in Biological Systems," J. Math. Biol., 26, 263-298(1988).   DOI   ScienceOn
23 Lewus, P. and Ford, R. M., "Quantification of Random Motility and Chemotaxis Bacterial Transport Coefficients Using Individual- cell and Population-scale Assays," Biotechnol. Bioeng., 75, 292-304(2001).   DOI   ScienceOn
24 Ramia, M., Tullock, D. L. and Phan-Thien, N., "The Role of Hydrodynamic Interaction in the Locomotion of Microorganisms," Biophys. J., 65, 755-778(1993).   DOI   ScienceOn
25 Biondi, S. A., Quinn, J. A. and Goldfine, H., "Random Motility of Swimming Bacteria in Restricted Geometries," AIChE J., 44, 1923-1929(1998).   DOI   ScienceOn
26 Di Leonardo, R., Angelani, L., Dell'arciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M. P., Mecarini, F., De Angelis, F. and Di Fabrizio, E., "Bacterial Ratchet Motors," Proc. Natl. Acad. Sci. U.S.A., 107, 9541-9545(2010).   DOI   ScienceOn
27 Frymier, P. D. and Ford, R. M., "Analysis of Bacterial Swimming Speed Approaching a Solid-liquid Interface," AIChE J., 43, 1341-1347(1997).   DOI   ScienceOn
28 Frymier, P. D., Ford, R. M., Berg, H. C. and Cummings, P. T., "Three-dimensional Tracking of Motile Bacteria Near a solid Planar Surface," Proc. Natl. Acad. Sci. U.S.A., 92, 6195-6199(1995).   DOI   ScienceOn
29 Berg, H. C., "How to Track Bacteria," Rev. Sci. Instrum., 42, 868-871(1971).   DOI   ScienceOn
30 Jeon, H., Lee, Y., Jin, S., Koo, S., Lee, C. S. and Yoo, J. Y., "Quantitative Analysis of Single Bacterial Chemotaxis Using a Linear Concentration Gradient Microchannel," Biomed. Microdevices, 11, 1135-1143(2009).   DOI   ScienceOn
31 Liu, Z. and Papadopoulos, K. D., "A Method for Measuring Bacterial Chemotaxis Parameters in a Microcapillary," Biotechnol. Bioeng., 51, 120-125(1996).   DOI   ScienceOn
32 Berg, H. C. and Brown, D. A., "Chemotaxis in Escherichia coli Analysed by Three-dimensional Tracking," Nature, 239, 500-504(1972).   DOI   ScienceOn
33 Ranjard, L. and Richaume, A. S., "Quantitative and Qualitative Microscale Distribution of Bacteria in Soil," Res. Microbiol., 152, 707-716(2001).   DOI   ScienceOn
34 Saye, D. J., Ogunseitan, O. A., Sayler, G. S. and Miller, R. V., "Transduction of Linked Chromosomal Genes between Pseudomonas- Aeruginosa Strains during Incubation Insitu in a Fresh-Water Habitat," Appl. Environ. Microbiol., 56, 140-145(1990).
35 Wiehlmann, L., Munder, A., Adams, T., Juhas, M., Kolmar, H., Salunkhe, P. and Tummler, B., "Functional Genomics of Pseudomonas aeruginosa to Identify Habitat-specific Determinants of Pathogenicity," Int. J. Med. Microbiol., 297, 615-623(2007).   DOI   ScienceOn
36 Wang, Y., Hammes, F., Boon, N. and Egli, T., "Quantification of the Filterability of Freshwater Bacteria Through 0.45, 0.22, and 0.1 mu m Pore Size Filters and Shape-dependent Enrichment of Filterable Bacterial Communities," Environ. Sci. Technol., 41, 7080-7086(2007).   DOI   ScienceOn