• Title/Summary/Keyword: swell noise

Search Result 11, Processing Time 0.032 seconds

Swell Noise Attenuation Using a Cascade of F-X Filter and Median Filter (F-X 필터와 중앙값 필터를 연속적으로 사용한 파랑잡음 제거)

  • Kim, Sookwan;Hong, Jong Kuk
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.199-208
    • /
    • 2012
  • High-amplitude swell noises (HASN) are very difficult to eliminate from the marine seismic data. In this paper, we applied F-X filter and median filter in order to suppress HASN. Test data have been acquired on the northern offshore of the South Shetland Islands in December, 2010. Parts of data have been contaminated by HASN caused by bad weather during the cruise. We applied F-X filter and median filter to test data with HASN. After F-X filtering, most of non-coherent noises and small-amplitude swell noises are eliminated effectively but HASN are still remained significantly. With median filter, HASN was suppressed better than F-X filter, however some of non-coherent noises are still remains. We applied a cascade of two filters and results show HASN and non-coherent noises are suppressed effectively. After the cascade of two filtering, it is possible to define reflection layers clearly on the velocity spectrum and to produce better stacked section with a good signal-to-noise ratio.

Noisy Power Quality Recognition System using Wavelet based Denoising and Neural Networks (웨이블릿 기반 잡음제거와 신경회로망을 이용한 잡음 전력 품질 인식 시스템)

  • Chong, Won-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Power Quality (PQ) signal such as sag, swell, harmonics, and impulsive transients are the major issues in the operations of the power electronics based devices and microprocessor based equipments. The effectiveness of wavelet based denoising techniques and recognizing different power quality events with noise has been presented in this paper. The algorithms involved in the noisy PQ recognition system are the wavelet based denoising and the back propagation neural networks. Also, in order to verify the real-time performances of the noisy PQ recognition systems under the noisy environments, SIL(Software In the Loop) and PIL(Processor In the Loop) were carried out, resulting in the excellent recognition performances.

DWT-based Denoising and Power Quality Disturbance Detection

  • Ramzan, Muhammad;Choe, Sangho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.330-339
    • /
    • 2015
  • Power quality (PQ) problems are becoming a big issue, since delicate complex electronic devices are widely used. We present a new denoising technique using discrete wavelet transform (DWT), where a modified correlation thresholding is used in order to reliably detect the PQ disturbances. We consider various PQ disturbances on the basis of IEEE-1159 standard over noisy environments, including voltage swell, voltage sag, transient, harmonics, interrupt, and their combinations. These event signals are decomposed using DWT for the detection of disturbances. We then evaluate the PQ disturbance detection ratio of the proposed denoising scheme over Gaussian noise channels. Simulation results also show that the proposed scheme has an improved signal-to-noise ratio (SNR) over existing scheme.

A Case Study of Sea Bottom Detection Within the Expected Range and Swell Effect Correction for the Noisy High-resolution Air-gun Seismic Data Acquired off Yeosu (잡음이 포함된 여수근해 고해상 에어건 탄성파 탐사자료에 대한 예상 범위에서의 해저면 선정 및 너울영향 보정 사례)

  • Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.116-131
    • /
    • 2019
  • In order to obtain high-quality high-resolution marine seismic data, the survey needs to be carried out at very low-sea condition. However, the survey is often performed with a slight wave, which degrades the quality of data. In this case, it is possible to improve the quality of seismic data by detecting the exact location of the sea bottom signal and eliminating the influence of waves or swells automatically during data processing. However, if noise is included or the sea bottom signal is weakened due to sea waves, sea bottom detection errors are likely to occur. In this study, we applied a method reducing such errors by estimating the sea bottom location, setting a narrow detection range and detecting the sea bottom location within this range. The expected location of the sea bottom was calculated using previously detected sea bottom locations for each channel of multi-channel data. The expected location calculated in each channel is also compared and verified with expected locations of other channels in a shot gather. As a result of applying this method to the noisy 8-channel high-resolution air-gun seismic data acquired off Yeosu, the errors in selecting the strong noise before sea bottom or the strong subsurface reflected signal after the sea bottom signal are remarkably reduced and it is possible to produce the high-quality seismic section with the correction of ~ 2.5 m swell effect.

Swell Effect Correction of Sub-bottom Profiler Data with Weak Sea Bottom Signal (해저면 신호가 약한 천부해저지층 탐사자료의 너울영향 보정)

  • Lee, Ho-Young;Koo, Nam-Hyung;Kim, Wonsik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun;Son, Woohyun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.181-196
    • /
    • 2015
  • A 3.5 kHz or chirp sub-bottom profiling survey is widely used in the marine geological and engineering purpose exploration. However, swells in the sea degrade the quality of the survey data. The horizontal continuity of profiler data can be enhanced and the quality can be improved by correcting the influence of the swell. Accurate detection of sea bottom location is important in correcting the swell effect. In this study, we tried to pick sea bottom locations by finding the position of crossing a threshold of the maximum value for the raw data and transformed data of envelope or energy ratio. However, in case of the low-quality data where the sea bottom signals are not clear due to sea wave noise, automatic sea bottom detection at the individual traces was not successful. We corrected the mispicks for the low quality data and obtained satisfactory results by picking a sea bottom within a range considering the previous average of sea bottom, and excluding unreliable big-difference picks. In case of trace by trace picking, fewest mispicks were found when using energy ratio data. In case of picking considering the previous average, the correction result was relatively satisfactory when using raw data.

Fast Envelope Estimation Technique for Monitoring Voltage Fluctuations

  • Marei, Mostafa I.;Shatshat, Ramadan El
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.445-451
    • /
    • 2007
  • Voltage quality problems such as voltage sag, swell, flicker, undervoltage, and overvoltage have been of great concern for both utilities and customers over the last decade. In this paper, a new approach based on the $H_{\infty}$ algorithm to monitor voltage disturbances is presented. The key idea of this approach is to estimate the amplitude of the fundamental component of distorted and noisy voltage waveform instantaneously, and then the information can be extracted from the estimated envelope to identify and classify different voltage related power quality problems. The $H_{\infty}$ algorithm is characterized by a fast tracking, unlike that of existing techniques. The $H_{\infty}$ algorithm outperforms the Kalman Filter (KF) by its fast convergence and robust tracking performance against non-Gaussian noise. The paper investigates the effects of various types of noise on the performance of the $H_{\infty}$ algorithm. Digital simulation results confirm the validity and accuracy of the proposed method. The proposed $H_{\infty}$ algorithm is examined by tracking the flicker produced by a resistance welder simulated in the PSCAD/EMTDC package.

Engineering of Grounding System Design for Protection of Surge & Noise (노이즈 및 서지제거를 위한 접지시스템 설계 엔지니어링)

  • Cho, D.H.;Lee, K.S.;Jung, C.H.;You, C.H.;Park, W.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.04b
    • /
    • pp.5-9
    • /
    • 2007
  • 본 논문에서는 실제 운용 중인 현장에서 노이즈 및 서지 신호를 측정 분석하여, 그 결과를 토대로 이들 노이즈 신호를 제거할 수 있는 접지시스템 및 내부 보호 설비를 제안하여 시공하였다. 실제 운용 중인 설비 내에 유도 흑은 침입하는 전원 계통의 sag, Swell, Transient, 서지 그리고 고조파와 같은 노이즈와 접지시스템을 통해 유입되는 다양한 노이즈 신호를 차단하여 빠르고 안전하게 제거하는 방안을 연구하였다. 이를 위해 운용 중인 설비의 다양한 노이즈 신호를 실측하였고, 실측된 결과로부터 전달 및 침입 경로를 예측하여, 기존 접지 구성 및 내부 배선의 문제점의 개선하고 노이즈 및 서지의 실제적 차단을 위한 접지시스템과 내부 보호 설비를 설계 제안하였다. 또한 설계 시뮬레이션 결과와 현장 시공 결과를 비교하여 제안된 설비의 성능을 확인하였고, 시공 후 설비 운용 중에 노이즈 및 서지 신호를 재 측정하여 기존 설비 운용시 측정했던 결과를 비교 분석하여 제안 보호 설비의 개선된 성능을 최종 확인하였다.

  • PDF

PC-based Processing of Shallow Marine Multi-channel Seismic Data (PC기반의 천해저 다중채널 탄성파 자료의 전산처리)

  • 공영세;김국주
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.116-124
    • /
    • 1995
  • Marine, shallow seismic data have been acquired and processed by newly developed multi-channel(6 channel), PC-based digital recording and processing system. The digital processing system includes pre-processing, swell-compensation filter, frequency filter, gain correction, deconvolution, stacking, migration, and plotting. The quality of processed sections is greatly enhanced in terms of signal-to-noise ratio and vertical/horizontal resolution. The multi-channel, digital recording, acquisition and processing system proved to be and economical, efficient and easy-to-use marine shallow seismic tool.

  • PDF

Error Check Algorithm in the Wireless Transmission of Digital Data by Water Level Measurement

  • Kim, Hie-Sik;Seol, Dae-Yeon;Kim, Young-Il;Nam, Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1666-1668
    • /
    • 2004
  • By wireless transmission data, there is high possibility to get distortion and lose by noise and barrier on wireless. If the data check damaged and lost at receiver, can't make it clear and can't judge whether this data is right or not. Therefore, by wireless transmission data need the data error check algorithm in order to decrease the data's distortion and lose and to monitoring the transmission data as real time. This study consists of RF station for wireless transmission, Water Level Meter station for water level measurement and Error check algorithm for error check of transmission data. This study is also that investigation and search for error check algorithm in order to wireless digital data transmission in condition of the least data's damage and lose. Designed transmitter and receiver with one - chip micro process to protect to swell the volume of circuit. Had designed RF transmitter - receiver station simply by means of ATMEL one - chip micro process in the systems. Used 10mW of the best RF power and 448MHz-449MHz on frequency band which can get permission to use by Frequency Law made by Korean government

  • PDF

The Development of the Data Error Inspection Algorithm for the Remote Sensing by Wireless Communication (원격계측을 위한 무선 통신 에러 검사 알고리즘 개발)

  • 김희식;김영일;설대연;남철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.993-997
    • /
    • 2004
  • A data error inspection algorithm for wireless digital data communication was developed. Original data converted By wireless digital data error inspection algorithm. Wireless digital data is high possibility to get distortion and lose by noise and barrier on wireless. If the data check damaged and lost at receiver, can't make it clear and can't judge whether this data is right or not. Therefore, by wireless transmission data need the data error inspection algorithm in order to decrease the data distortion and lose and to monitoring the transmission data as real time. This study consists of RF station for wireless transmission, Water Level Meter station for water level measurement and Error inspection algorithm for error check of transmission data. This study is also that investigation and search for error inspection algorithm in order to wireless digital data transmission in condition of the least data's damage and lose. Designed transmitter and receiver with one - chip micro process to protect to swell the volume of circuit. Had designed RF transmitter - receiver station simply by means of ATMEL one - chip micro processing the systems. Used 10mW of the best RF power and 448MHz-449MHz on frequency band which is open to public touse free within the limited power.

  • PDF