• Title/Summary/Keyword: sweet potato (Ipomoea batatas (L.) Lam)

Search Result 23, Processing Time 0.025 seconds

Effect of Growth Regulator, Sucrose, and Minimal-growth Conservation on In Vitro Propagation of Virus-free Sweet Potato Plantlets (고구마 무병묘의 기내 증식에 미치는 생장조절물질, Sucrose, 최소생장 보존의 영향)

  • Lee, Na Rha;Lee, Seung Yeob
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • The influence of growth regulators (NAA and BA) and sucrose concentrations (0, 3, 5, 7, 9%) on in vitro rapid-propagation of virus-free sweet potato [Ipomoea batatas (L.) Lam.] was investigated with single-node or shoot-tip culture of two cultivars ('Matnami' and 'Shinhwangmi'). The survival rate and growth of shoot-tip explant was also investigated under the presence or absence of light (blue and red LED = 7:3, 150±5 μmol·m-2·s-1 PPFD) during minimal-growth in vitro conservation at 15℃. Vine length, vine diameter, fresh weight and dry weight were enhanced without callusing of explant in the MS medium supplemented with 0.2-0.5 mg·L-1 BA. The growth of single-node and shoot-tip explants were significantly enhanced with the increase of vine length, number of leaf, number of root, fresh weight, and dry weight in the solid medium containing 5% sucrose and 0.2 mg·L-1 BA. Vine elongation of shoot-tip explants were highest in the liquid medium containing 3% sucrose than the solid medium. The survival rate of minimal-growth in vitro conservation was 100% in 5 months under the presence of light (LED, 150±5 μmol·m-2·s-1 PPFD) at 15℃, but the explants in dark condition died in 3 months. The light was absolutely necessary for the in vitro conservation under minimal-growth conditions of virus-free sweet potato plantlets at 15℃, and the high density of explants (10 plantlets per Petri Dish) was increased the efficiency of mass conservation.

Effects of Light-emitting Diodes on In Vitro Growth of Virus-free Sweet Potato Plantlets (LED가 고구마 바이러스 무병묘의 기내 생장에 미치는 영향)

  • Yoo, Kyoung-Ran;Lee, Seung-Yeob
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.490-498
    • /
    • 2017
  • The in vitro growth of virus-free sweet potato [Ipomoea batatas (L.) Lam.] plantlets was investigated under different light sources: fluorescent lamp (control); red (660 nm), blue (460 nm), white light-emitting diodes (LED), and two mixtures of blue and red LED (R:B = 8:2, and 7:3). Single node explants (10 mm) of three cultivars ('Matnami', 'Shincheonmi', and 'Yeonhwangmi') were cultured on Murashige and Skoog medium supplemented with $0.2mg{\cdot}L^{-1}$ 6-benzyladenine for 4 weeks. Explants were exposed to $150{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux at a distance of 20 cm, constant temperature of $25^{\circ}C$, and under 16/8-h (day/night) photoperiod. Using the same method, the in vitro growth of 10 cultivars under red LED was also compared. After 3 weeks, vine length was highest in plantlets cultured under red LED, and lowest in plantlets cultured under blue LED. Fresh and dry weights were also greatest in plantlets cultured under red LED. Compared to the control, vine thickness was significantly higher in plantlets grown under white LED and the 7:3 R:B LED mixture. Significant differences were observed among the 10 cultivars grown under red LED. 'Matnami', 'Shincheonmi', and 'Shinhwangmi' all had excellent vine lengths, and fresh and dry weights. Compared to the control, vine elongation of sweet potato plantlets was most effective under red LED, and culture duration was about 1 week shorter.

Antioxidant Compounds and Antioxidant Activities of Sweet Potatoes with Cultivated Conditions (재배조건에 따른 고구마의 항산화성분 및 항산화활성)

  • Woo, Koan-Sik;Seo, Hye-In;Lee, Yong-Hwan;Kim, Hyun-Young;Ko, Jee-Yeon;Song, Seuk-Bo;Lee, Jae-Saeng;Jung, Ki-Yuol;Nam, Min-Hee;Oh, In-Seok;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.4
    • /
    • pp.519-525
    • /
    • 2012
  • Effects of cultivated conditions on antioxidant compounds and antioxidant activities of sweet potatoes (Ipomoea batatas (L.) Lam) were determined. The cultivated variety was Shinyulmi, and they were cultivated in a conventional culture, successful cropped hairy vetch culture, successful cropped barley cultivation, successful cropped rye cultivation, successful cropped mix-seeding of hairy vetch and barley, successful cropped mix-seeding of hairy vetch and rye, and not fertilizer. The brix degree, moisture, protein, and ash content of the sweet potatoes did not significantly change with the cultivated conditions. However amylose, total dietary fiber, and mineral content had significant changes. The total polyphenol, flavonoid, and tannin content of the methanolic extracts of the sweet potato's pericarp showed significant differences from cultivated conditions, however, the sweet potato's sarcocarp did not significantly change. The highest DPPH and ABTS radical scavenging activities of the methanolic extracts of the sweet potatoes were 958.81 and 663.53 mg TE/100 g in the sweet potato's pericarp on the successful cropped hairy vetch culture. Generally, there was a difference in antioxidant compound content and radical scavenging activity on the methanolic extract of sweet potato with cultivated conditions.

Effect of Virus-free Plant and Subsoiling Reversion Soil for Reduction of Injury by Continuous Cropping of Sweet Potato (고구마 연작장해 경감을 위한 바이러스 무병묘 재배와 심토반전 효과)

  • Song, Hae-Ahn;Kim, Kab-Cheol;Lee, Seung-Yeob
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.3
    • /
    • pp.254-261
    • /
    • 2012
  • To reduce the injury by continuous cropping of sweet potato (Ipomoea batatas (L.) Lam.), the farmer's plant and virus-free plant were cultivated with the density of $70{\times}25cm$ (June 10, 2011) in continuous cropping soil (CCS) and subsoiling reversion soil (SRS). Fertilizer was applied at the rates of 55-63-156 $kg\;ha^{-1}$ ($N-P_2O_5-K_2O$) and 10 $ton\;ha^{-1}$ of cattle manure in CCS, and it was applied the 50% increased cattle manure compost and nitrogen in DRS. Symptoms of viral infection were revealed in the farmer's plant at 30 days after planting, but there were no symptoms in virus-free plant. The yield of virus-free plant was more increased 15% and 10.5% than that of farmer's plant in DRS and CCS, respectively. The yield of sweetpotato in SRS was more increased 8.8% and 3.2% in farmer's plant and virus-free plant compared to CCS, respectively. In DRS, the rate of marketable tuber of virus-free plant was increased by 80% compared to the farmer's plant (60.1%). The virus-free plant was produced the tuber with more brilliant peel color and well-formed shape compared to the farmer's plant. The increased yield of virus-free plant and in SRS soil condition showed a positive relationship (p=0.05) with the number of leaf per plant at 30 days and the number of branch per plant at 120 days after planting. The results showed that the early growth after planting was very important for the development of storage root. Therefore, the deep-subsoil reversion and cultivation of virus-free plant could be reduced the injury by continuous cropping of sweet potato, and increased farm income.

Effects of Nutrient Solution Composition and Cutting Size on Growth of Virus-free Sweet Potato Plant in Nutrient Film Technique (NFT 수경재배에서 양액 종류 및 삽수 크기가 고구마 바이러스 무병주 생육에 미치는 영향)

  • Yoo, Kyoung-Ran;Lee, Seung-Yeob;Bae, Jong-Hyang
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.686-693
    • /
    • 2012
  • To develop a technique for mass-propagation of virus-free sweet potato [Ipomoea batatas (L.) Lam.] plant using nutrient film technique (NFT), the growth characteristics of 4 cultivars as affected by nutrient solution composition and cutting size were investigated. 72 cells (35 mL/cell) plug trays filled with vermiculite and perlite (1:1, v/v) were used. Vine length, fresh and dry weights of virus-free plants were the greatest in the nutrient solution recommended by National Horticultural Research Station in Japan, followed by that recommended by National Institute of Horticultural & Herbal Science in Korea, and Yamazaki's nutrient solution for lettuce. The growth of uppershoot cuttings was the best among 4 subsections of cutting. Vine length, and fresh and dry weights increased in the longer cutting treatments, and were better in 'Shinzami' and 'Yeonhwangmi' than those in 'Mannami' and 'Shincheonmi'. Vine diameter and length of the longest root were not significantly affected by the cutting size and cutting source. The growth characteristics of the single node cutting were not significantly different from those in 2-node cutting. The efficiency of rapid mass-propagation could be promoted with single node cuttings and uppershoot cuttings grown in NFT system.

Ensiling of Sweet Potato Leaves (Ipomoea batatas (L.) Lam) and the Nutritive Value of Sweet Potato Leaf Silage for Growing Pigs

  • An, Le Van;Lindberg, Jan Erik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.4
    • /
    • pp.497-503
    • /
    • 2004
  • The effect of adding carbohydrate-rich feedstuffs to sweet potato leaves (SPL) on silage quality was studied using a total of 180 laboratory silos. Silage quality was assessed by changes of pH, dry matter (DM), crude protein (CP) and ammonia nitrogen ($NH_{3}$-N). Pre-wilted SPL was mixed with cassava root meal (CRM), sweet potato root meal (SPM) or sugar cane molasses (Mo) at levels of 0, 30, 60 and 90 g $kg^{-1}$ (air-dry weight of additives to pre-wilted weight of SPL). Samples for assessing silage quality were collected after mixing the SPL with the additive and thereafter at 7, 14, 28 and 56 days of ensiling. There was a marked decrease in pH after 7 days and the pH remained low and stable until day 56. Addition of 60 and 90 g $kg^{-1}$ resulted in a lower pH (p<0.05) than the other treatments. The DM content of the silage increased (p<0.05) with increasing levels of additive, while there were no differences in DM with time of ensiling. The CP content of the silage decreased (p<0.05) with increasing levels of additive. The CP content did not change up to 28 days, but was lower (p<0.05) after 56 days in all treatments. The $NH_{3}$-N levels were increasing (p<0.05) with time of ensiling, and were lower (p<0.05) with additive levels of 60 g $kg^{-1}$ or higher. Also, the additive source affected the $NH_{3}$-N values, with the lowest values found for Mo. Castrated male pigs (Large White$\times$Mongcai) were used in 4$\times$4 Latin square design to study the total tract digestibility and nitrogen (N) utilisation of diets with inclusion of ensiled SPL. The diets were based on cassava root meal with inclusion of protein from either fish meal (C) or SPL ensiled with CRM (D1), SPL ensiled with SPM (D2) and SPL ensiled with Mo (D3). The digestibility of DM, organic matter (OM) and CP were higher (p<0.05), and the digestibility of crude fibre (CF) was lower (p<0.05), in diet C than in diets D1, D2 and D3. However, there were no differences (p>0.05) in digestibility of dietary components between diets D1, D2 and D3. Also, the excretion of N in faeces was higher (p<0.05) and the N retention was lower (p<0.05) in diets D1, D2 and D3 than in diet C. It can be concluded from the present experiments, that a good quality silage can be produced from pre-wilted SPL by addition of 60 g $kg^{-1}$ of either CRM, SPM or Mo. Diets with inclusion of 450 g ensiled SPL $kg^{-1}$ DM showed a high digestibility of dietary components and thus ensiled SPL should be considered as a potential feed resource for growing pigs.

Comparative proteome profiling in the storage root of sweet potato during curing-mediated wound healing (큐어링 후 저장에 따른 고구마 저장뿌리 단백질체의 비교분석)

  • Ho Yong Shin;Chang Yoon Ji;Ho Soo Kim;Jung-Sung Chung;Sung Hwan Choi;Sang-Soo Kwak;Yun-Hee Kim;Jeung Joo Lee
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.1-10
    • /
    • 2023
  • Sweet potato (Ipomoea batatas L. Lam) is an economically important root crop and a valuable source of nutrients, processed foods, animal feeds, and pigment materials. However, during post-harvest storage, storage roots of sweet potatoes are susceptible to decay caused by various microorganisms and diseases. Post-harvest curing is the most effective means of healing wounds and preventing spoilage by microorganisms during storage. In this study, we aimed to identify proteins involved in the molecular mechanisms related to curing and study proteomic changes during the post-curing storage period. For this purpose, changes in protein spots were analyzed through 2D-electrophoresis after treatment at 33℃ (curing) and 15℃ (control) for three days, followed by a storage period of eight weeks. As a result, we observed 31 differentially expressed protein spots between curing and control groups, among which 15 were identified. Among the identified proteins, the expression level of 'alpha-amylase (spot 1)' increased only after the curing treatment, whereas the expression levels of 'probable aldo-keto reductase 2-like (spot 3)' and 'hypothetical protein CHGG_01724 (spot 4)' increased in both the curing and control groups. However, the expression level of 'sporamin A (spot 10)' decreased in both the curing and control treatments. In the control treatment, the expression level of 'enolase (spot 14)' increased, but the expression levels of 'chain A of actinidin-E-64 complex+ (spot 19)', 'ascorbate peroxidase (spot 22)', and several 'sporamin proteins (spot 20, 21, 23, 24, 27, 29, 30, and 31)' decreased. These results are expected to help identify proteins related to the curing process in sweet potato storage roots, understand the mechanisms related to disease resistance during post-harvest storage, and derive candidate genes to develop new varieties with improved low-temperature storage capabilities in the future.

Growth Characteristics and Yield of Sweet Potato Cultivars between Virus-free and Farmer's Slips in Late Season Cultivation (고구마 바이러스 무병묘와 농가묘의 만기재배에서 품종 간 생육 및 수량특성)

  • Yoo, Kyoung-Ran;Lee, Seung-Yeob
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.1
    • /
    • pp.43-49
    • /
    • 2013
  • This work was conducted to obtain some information about stable production of high quality seed-tubers in the late season cultivation of virus-free sweet potato [Ipomoea batatas (L.) Lam.]. Growth characteristics and storage root yield between virus-free and farmer's slips in 9 cultivars were investigated using black-film vinyl mulching cultivation with $75{\times}25cm$ planting density on July 10. At 30 days after planting, vine length, vine diameter, number of node, and number of branch in virus-free slips were significantly increased than those in farmer's slips. The vine growth was significantly different among cultivars, and vine elongation was excellent in 'Kogeonmi', 'Shincheonmi', 'Shinhwangmi', 'Shinyulmi', and 'Yeonhwangmi' compared to the other cultivars. At 110 days after planting, vine length, vine diameter, number of node, number of branch, and fresh weight were significantly different among cultivars, but no significant differences between virus-free and farmer's slips were seen except number of node. Total yield in virus-free slips was increased by 12-49% among cultivars than that in farmer's slips. The mean yields between virus-free and farmer's slips were 1,625 kg/10a and 1,230 kg/10a, respectively, and it was significantly different between virus-free and farmer's slips. Percentage of marketable storage root in virus-free slips was 65.6%, and it was significantly higher than 57.8% in farmer's slips. Marketable yields ($40g{\leq}$) between virus-free and farmer's slips were 1,067 kg/10a and 710 kg/10a, respectively. Marketable yield in 'Shincheonmi', 'Shinyulmi' and 'Shinzami' was more than 1,300 kg/10a, and these cultivars showed to be highly adaptable for the late-season cultivation among 9 tested cultivars.

Effects of Cutting Size and Planting Depth on Growth and Yield in Late-Cultivation of Sweet Potato (고구마 만기재배에서 생육 및 수량에 미치는 삽수크기 및 삽식깊이의 영향)

  • Lee, Seung-Yeob;Kim, Tae-Hwan;Lee, Na-Rha;Lee, Ear-Jin;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.19 no.3
    • /
    • pp.153-158
    • /
    • 2010
  • To obtain the basic information for late-cultivation of sweet potato [Ipomoea hatalas (L.) Lam. cv. 'Jinhongmi'], vine growth and storage root yield were investigated in variously cutting sizes (10, 20, and 30 cm) and planting depths (1~4 nodes in 30 cm vine) using black-film vinyl mulching cultivation ($75{\times}25\;cm$ planting density, June 20). At 30 days after planting, main vine length, number of node, and vine fresh weight were significantly affected by the cutting length, and these were significantly different 10 and 30 cm at 120 days. The vine elongation affected by planting depths showed the best growth in 2-nodes planting depth and the lowest growth in 4-nodes planting depth at 30 days, but the vine growth was not significantly different among planting depths at 120 days. Number of storage root per plant, weight of storage root per plant, mean weight of storage root and yield of storage root were increased in longer cutting length, and those in 10 cm cutting length were significantly reduced compared to the 20 and 30 cm cutting length. Number of storage root per plant in the deeper planting was much increased, but mean weight of storage root was much decreased. Yield of storage root per 10a was highest in 3-nodes planting depth. Therefore, planting methods by cutting length over 20 cm and planting depth of 2~3 nodes in late-cultivation of sweet potato will be more efficient to improve the vine growth and storage root yield.

Rapid Diagnosis of Resistance to Glufosinate-ammonium in Transgenic Sweet Potato (형질전환 고구마에 대한 Glufosinate-ammonium 저항성 간이진단법)

  • Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.380-389
    • /
    • 2010
  • Transgenic herbicide-resistant sweet potato plants [Ipomoea batatas (L.) Lam.] produced through a biolistic transformation were used in this study. The objective of this research was to find out a rapid and reliable assay method for confirming glufosinate-ammonium resistance. The techniques tested include whole-plant bioassay, one leaf bioassay, and leaf disk bioassay. Parameters investigated in this study were leaf injury and ammonium accumulation at 1 and 5 days after treatment of glufosinate-ammonium. In the leaf disk bioassay, leaf injury of the transgenic line 7171 was 1.9-fold less affected by glufosinate-ammonium than the wild type. The leaf injury of 7171 in one leaf and whole-plant bioassays was 59- and 92-fold less affected by glufosinate-ammonium, respectively, compared with that of the wild type. Leaf disk, one leaf, and whole-plant bioassays showed that ammonium accumulation of the 7171 was 2 to 20-, 4 to 43-, and 6 to 115-fold less affected by 0.5-5 mM glufosinate-ammonium than that of the wild type. All three bioassays successfully distinguished the resistance from the transgenic lines, but one leaf bioassay is the simplest and quickest. Leaf injury and ammonium accumulation were the same in leaves 1, 3, 5, 7, and 10 of 3 mM glufosinate-ammonium treated plants or nontreated plants. The one leaf bioassay was chosen as the standard procedure for future confirmation of resistance in transgenic sweet potato because it is a rapid and reliable assay.