DOI QR코드

DOI QR Code

Growth Characteristics and Yield of Sweet Potato Cultivars between Virus-free and Farmer's Slips in Late Season Cultivation

고구마 바이러스 무병묘와 농가묘의 만기재배에서 품종 간 생육 및 수량특성

  • Yoo, Kyoung-Ran (Institute of Life Science and Natural Resources, Wonkwang University) ;
  • Lee, Seung-Yeob (Institute of Life Science and Natural Resources, Wonkwang University)
  • 유경란 (원광대학교 생명자원과학연구소) ;
  • 이승엽 (원광대학교 생명자원과학연구소)
  • Received : 2012.09.22
  • Accepted : 2013.02.08
  • Published : 2013.03.31

Abstract

This work was conducted to obtain some information about stable production of high quality seed-tubers in the late season cultivation of virus-free sweet potato [Ipomoea batatas (L.) Lam.]. Growth characteristics and storage root yield between virus-free and farmer's slips in 9 cultivars were investigated using black-film vinyl mulching cultivation with $75{\times}25cm$ planting density on July 10. At 30 days after planting, vine length, vine diameter, number of node, and number of branch in virus-free slips were significantly increased than those in farmer's slips. The vine growth was significantly different among cultivars, and vine elongation was excellent in 'Kogeonmi', 'Shincheonmi', 'Shinhwangmi', 'Shinyulmi', and 'Yeonhwangmi' compared to the other cultivars. At 110 days after planting, vine length, vine diameter, number of node, number of branch, and fresh weight were significantly different among cultivars, but no significant differences between virus-free and farmer's slips were seen except number of node. Total yield in virus-free slips was increased by 12-49% among cultivars than that in farmer's slips. The mean yields between virus-free and farmer's slips were 1,625 kg/10a and 1,230 kg/10a, respectively, and it was significantly different between virus-free and farmer's slips. Percentage of marketable storage root in virus-free slips was 65.6%, and it was significantly higher than 57.8% in farmer's slips. Marketable yields ($40g{\leq}$) between virus-free and farmer's slips were 1,067 kg/10a and 710 kg/10a, respectively. Marketable yield in 'Shincheonmi', 'Shinyulmi' and 'Shinzami' was more than 1,300 kg/10a, and these cultivars showed to be highly adaptable for the late-season cultivation among 9 tested cultivars.

바이러스 무병묘의 만기재배를 통한 우량 씨고구마의 안정적 생산과 적응품종 선발을 위하여, 9 품종의 바이러스 무병묘와 농가묘를 7월 10일 $75{\times}25cm$로 정식하여 흑색비닐로 멀칭재배를 한 다음, 생육특성 및 수량 등을 조사하였다. 1. 정식 30일째의 초기생육은 농가묘보다 무병묘에서 줄기 길이, 줄기 직경, 마디수, 곁가지수 등이 유의하게 증가하였고, 품종 간에도 유의한 차이를 보였으며, '고건미', '신천미', '신황미', '신율미', '연황미' 등에서 초기생육이 양호하였다. 2. 정식 110일째의 지상부 생육에서 줄기 길이, 줄기 직경, 마디수, 분지수 및 생체중 등은 품종간에 유의한 차이를 보였으나, 무병묘와 농가묘간에는 마디수 외에 다른 형질들은 유의한 차이를 보이지 않았다. 3. 만기재배에 따른 무병묘 수량은 품종에 따라 농가묘보다 12-49% 증수되었으며, 무병묘와 농가묘간 평균수량은 각각 1,625 kg/10a과 1,230 kg/10a 으로 무병묘에서 유의하게 증가하였다. 4. 씨고구마로 이용할 수 있는 40 g 이상의 상저비율은 무병묘 65.6%, 농가묘 57.8%로 무병묘에서 유의하게 증가하였으며, 무병묘와 농가묘간 상저수량은 각각 1,067 kg/10a과 710 kg/10a 이었다. 5. 공시된 9품종 중에서 1,300 kg/10a 이상의 상저수량을 보인 '신자미', '신천미', '신율미' 등 3품종의 만기재배 적응성이 높았다.

Keywords

References

  1. Carrolla, H. W., A. Q. Villordonc, C. A. Clarkb, D. R. La Bontea, and M. W. Hoya. 2004. Studies on Beauregard sweetpotato clones naturally infected with viruses. Int. J. Pest Manag. 50 : 101-106. https://doi.org/10.1080/09670870410001655894
  2. Chung, M. N. 2008. A study on the virus detection methods and virus-free plant mass production in sweetpotato. Ph. D. thesis. Chonnam National University, Gwangju, Korea.
  3. Clark, C. A. and R. A. Valverde. 2000. Identifying the role of viruses in sweet potato cultivar decline in Louisiana, USA. in: Int. Workshop Sweetpotato Cultivar Decline Study. Y. Nakasawa and K. Ishiguro, eds. Miyakonojo, Japan. p. 62-69.
  4. Fuglie, K. O., L. Zhang, L. F. Salazar, and T. S. Walker. 1999. Economic impact of virus-free sweetpotato planting material in Shandong province, China. In : Impact on a Changing World. CIP program report 1997-98. CIP, Rima, Peru. p. 249-254.
  5. Gibson, R. W., I. Mpembe, T. Alicai, E. E. Carey, R. O. M. Mwanga, S. E. Seal, and H. J. Vetten. 1998. Symptoms, aetiology and serological analysis of sweet potato virus disease in Uganda. Plant Pathol. 47 : 95-102. https://doi.org/10.1046/j.1365-3059.1998.00196.x
  6. Gibson R. W., R. O. M. Mwanga, S. Kasule, I. Mpembe, and E. E. Carey. 1997. Apparent absence of viruses in most symptomless field-grown sweet potato in Uganda. Ann. Appl. Biol. 130 : 481-490. https://doi.org/10.1111/j.1744-7348.1997.tb07676.x
  7. Gutierrez, D. L., S. Fuentes, and L. Salazar. 2003. Sweetpotato virus disease (SPVD): distribution, incidence, and effect on sweetpotato yield in Peru. Plant Dis. 87 : 297-302. https://doi.org/10.1094/PDIS.2003.87.3.297
  8. Kano, Y. and R. Nagata. 1999. Comparison of the rooting ability of virus infected and virus-free cuttings of sweet potatoes (Ipomoea batatas Poir.) and an anatomical comparison of roots. J. Hort. Sci. Biotechnol. 74 : 785-790.
  9. Karyeija, R. F., R. W. Gibson, and J. P. T. Valkonen. 1998. The significance of sweetpotato feathery mottle virus in subsistence sweetpotato production in Africa. Plant Dis. 82 : 4-15. https://doi.org/10.1094/PDIS.1998.82.1.4
  10. Ling, K. S., D. M. Jackson, H. Harrison, A. M. Simmons, and Z. Pesic-Van Esbroeck. 2010. Field evaluation of yield effects on the USA heirloom sweetpotato cultivars infected by sweet potato leaf curl virus. Crop Protection 29 : 757-765. https://doi.org/10.1016/j.cropro.2010.02.017
  11. Matimati, I., E. Hungwe, and F. S. Murungu. 2005. Vegetative growth and tuber yields of micropropagated and farm-retained sweet potato (Ipomea batatas) cultivars. J. Agron. 4 : 156-160. https://doi.org/10.3923/ja.2005.156.160
  12. Ngevea1, J. M. and J. C. Bouwkamp. 1991. Effects of sweet potato virus disease (SPVD) on the yield of sweet potato genotypes in Cameroon. Exp. Agric. 27 : 221-225. https://doi.org/10.1017/S0014479700018858
  13. Park, K. W. and Y. S. Kim. 1998. Hydroponics in horticulture. Academybook, Seoul.
  14. RDA. 2006. Cultivation of sweet potato. Standard textbook for agronomy-28. Rural Development Administration. Suwon. Korea.
  15. Song, H. A., K. C. Kim, and S. Y. Lee. 2012. Effect of virus-free plant and subsoiling reversion soil for reduction of injury by continuous cropping of sweet potato. Kor. Crop. Sci. 57 : 254-261. https://doi.org/10.7740/kjcs.2012.57.3.254
  16. Teow, C. C., V. Truong, R. F. McFeeters, R. L. Thompson, K. V. Pecota, and G. C. Yencho. 2007. Antioxidant activities, phenolic and ${\beta}$-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 103 : 829-838. https://doi.org/10.1016/j.foodchem.2006.09.033
  17. Untiveros, M., S. Fuentes, and L. F. Salazar. 2007. Synergistic interaction of sweet potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Plant Dis. 91 : 669-676. https://doi.org/10.1094/PDIS-91-6-0669
  18. Villordon, A., D. R. LaBonte, N. Firon, Y. Kfir, E. Pressman, and A. Schwartz. 2009. Characterization of adventitious root development in sweetpotato. HortScience 44 : 651-655.
  19. Yang, C. L., Y. F. Shang, J. H. Zhao, and C. S. Li. 1998. Produce techniques and practice of virus-free sweetpotato. Acta Phytophylac. Sin. 25 : 51-55.

Cited by

  1. Effect of Virus Free Stocks of Sweetpotato Cultivated at Different Regions vol.60, pp.1, 2015, https://doi.org/10.7740/kjcs.2014.60.1.054
  2. LED 광질에 따른 고구마의 묘소질 및 괴근 수량성 vol.23, pp.4, 2014, https://doi.org/10.12791/ksbec.2014.23.4.356
  3. 고구마 바이러스 무병묘의 세대간 생육 및 수량 변이 vol.23, pp.4, 2013, https://doi.org/10.12791/ksbec.2014.23.4.376
  4. Effect of Growth Regulator, Sucrose, and Minimal-growth Conservation on In Vitro Propagation of Virus-free Sweet Potato Plantlets vol.29, pp.1, 2013, https://doi.org/10.12791/ksbec.2020.29.1.1