• Title/Summary/Keyword: sweet potato

Search Result 613, Processing Time 0.033 seconds

Antioxidant Activities of Colored Sweet Potato Cultivars by Plant Parts

  • Boo, Hee-Ock;Chon, Sang-Uk;Kim, Sun-Min;Pyo, Byung-Sik
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.177-180
    • /
    • 2005
  • Antioxidant activity of crude extracts from colored sweet potato cultivars by plant parts such as root, stem and leaf was evaluated. The highest TBARS values were obtained from root samples of sweet patato, and followed by stems and leaves, indicating that leaf sample showed the strongest antioxidant activity. Sweet potato cultivars with yellow flesh and leaf part exhibited strong antioxidant activities. Antioxidant activities of leaf and stem extracts were maintained for 21 days and were a little lower than that of BHT. The DPPH radical scavenging activity was the highest in "Sinhwangmi" leaf, and followed by "Jami" root. Chlorogenic acid was detected as the most abundant antioxidant substance among all fractions. These results suggest that the antioxidant activity of sweet potato differs depending on plant part and cultivar.

Development of sweet potato double cropping system in the southern island area of Korea

  • Moon, Jin-Young;Shin, Jung-Ho;Song, Jae-Ki;Choi, Yong-Jo;Hong, Kwang-Pyo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.267-267
    • /
    • 2017
  • In Korea, the average air temperature has been elevated twice faster than the average global warming. And the climate warming is characterized by the smaller rise of air temperature in summer and the greater rise of air temperature in spring and winter. Therefore, the number of frost-free days to determine the cultivation ability of crops has increased by more than 15 days in 10 years according to climate warming. This climate warming trend has extended and is projected to extend not only the sweet potato growing season but also the sweet potato early cultivating area to higher altitude and latitude region. This study was carried out to evaluate the possibility of sweet potato double cropping in the southern island area of Korea by assessing the growth and yield performance of sweet potato cultivated at extremely-early and -late time. We had performed at Yokji Island Yokji Island($E128^{\circ}$ 18' $N34^{\circ}$ 36'), a representative specified complex area of sweet potato cultivation in southern Korea. As the test varieties, the major cultivars of the this region, Shinyulmi and early hypertrophic cultivars, Dahomi were used. The prior cropping were planted with PE film mulching on March 30 and April 10, and harvested after 110 days. So the succeeding cropping were planted without PE film mulching on July 25 and August 5 according to the harvesting time of the prior sweet potato and harvested after 120 days. As a control, it was harvested on September 15, 120 days after planted on May 15. Each experimental plot had an area of 12 square meters consisting of 4 beds, and was planted one at a time at intervals of 25cm. We had investigated growth characteristics - main vine length, node number, branch number, total vine yield, and tuberous root characteristics - tuberous root number, average weight, starch value, and etc. After harvesting, we analyzed the economic effects by examining the postharvest quantity, the input labor, the management cost, and the income. The total yield of marketable products in prior and succeeding cropping was 46~70% higher than that of control. The average unit price of sweet potato was 36% higher than the conventional culture, and the gross income increased by 98%, but the operating cost increased by 83%, and the farm income increased by 103%. There are considerations such as the difficulty of enlargement of cultivation area due to lack of labor in limited space and the need for watering measures due to spring drought. However, if the area of application for sweet potatoes double system is increased by 10%, it can be used as a new cropping system.

  • PDF

Development of sweet potato double cropping system in the southern island area of Korea

  • Moon, Jin-young;Shin, Jung-ho;Song, Jae-ki;Choi, Yong-jo;Hong, Kwang-pyo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.280-280
    • /
    • 2017
  • In Korea, the average air temperature has been elevated twice faster than the average global warming. And the climate warming is characterized by the smaller rise of air temperature in summer and the greater rise of air temperature in spring and winter. Therefore, the number of frost-free days to determine the cultivation ability of crops has increased by more than 15 days in 10 years according to climate warming. This climate warming trend has extended and is projected to extend not only the sweet potato growing season but also the sweet potato early cultivating area to higher altitude and latitude region. This study was carried out to evaluate the possibility of sweet potato double cropping in the southern island area of Korea by assessing the growth and yield performance of sweet potato cultivated at extremely-early and -late time. We had performed at Yokji Island Yokji Island($E128^{\circ}$ 18' $N34^{\circ}$ 36'), a representative specified complex area of sweet potato cultivation in southern Korea. As the test varieties, the major cultivars of the this region, Shinyulmi and early hypertrophic cultivars, Dahomi were used. The prior cropping were planted with PE film mulching on March 30 and April 10, and harvested after 110 days. So the succeeding cropping were planted without PE film mulching on July 25 and August 5 according to the harvesting time of the prior sweet potato and harvested after 120 days. As a control, it was harvested on September 15, 120 days after planted on May 15. Each experimental plot had an area of 12 square meters consisting of 4 beds, and was planted one at a time at intervals of 25cm. We had investigated growth characteristics - main vine length, node number, branch number, total vine yield, and tuberous root characteristics - tuberous root number, average weight, starch value, and etc. After harvesting, we analyzed the economic effects by examining the postharvest quantity, the input labor, the management cost, and the income. The total yield of marketable products in prior and succeeding cropping was 46~70% higher than that of control. The average unit price of sweet potato was 36% higher than the conventional culture, and the gross income increased by 98%, but the operating cost increased by 83%, and the farm income increased by 103%. There are considerations such as the difficulty of enlargement of cultivation area due to lack of labor in limited space and the need for watering measures due to spring drought. However, if the area of application for sweet potatoes double system is increased by 10%, it can be used as a new cropping system.

  • PDF

Effect of Nitrite Substitution of Sausage with Addition of Purple Sweet Potato Powder and Purple Sweet Potato Pigment (자색고구마 분말과 자색 색소를 이용한 소시지의 아질산염 대체 효과)

  • Lee, Namrye;Kim, Chung Sick;Yu, Gun Sung;Park, Man Chun;Jung, Wan Ou;Jung, Un Kwon;Jo, Yoon Joung;Kim, Kyung Hee;Yook, Hong Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.896-903
    • /
    • 2015
  • The objective of this study was to investigate the effect of nitrite substitution of sausage with purple sweet potato by examining the quality characteristics of sausage. Four sausage samples were prepared as follows: F1 (0.15% sodium nitrite), F2 (0.2% pigment), F3 (0.2% pigment and 5% powder), and F4 (0.2% pigment and 10% powder). A substitution of sodium nitrite with 0.2% purple sweet potato pigment reduced redness while increased yellowness. However, the addition of 5% purple sweet potato powder to 0.2% purple sweet potato pigment increased redness while reduced yellowness, which was similar to those of sausage with 0.15% addition of sodium nitrite. Further, color change increased as the content of purple sweet potato increased. As the amount of purple sweet potato increased, the contents of Ca, K, and Mg increased but hardness, gumminess, and chewiness decreased. In the sensory evaluation, the addition of purple sweet potato did not influence on appearance, color, or flavor. However, the addition of 10% purple sweet potato decreased the taste and texture of sausage. Correlation coefficients between overall acceptability, texture, appearance, color, taste, and flavor were 0.901, 0.895, 0.877, 0.844, and 0.688, respectively. Therefore, proper content of purple sweet potato powder and purple sweet potato pigment were determined to be 5% and 0.2%, respectively, for the substitution of sodium nitrite.

Degradation Kinetics of Anthocyanin Pigment Solutions from Purple-fleshed Sweet Potato Cultivars (자색고구마 품종별 안토시아닌 색소의 분해에 대한 속도론적 연구)

  • Park, Jeong-Seob;Bae, Jae-O;Chung, Bong-Woo;Jung, Mun-Yhung;Choi, Dong-Seong
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.559-566
    • /
    • 2011
  • The effects of pH and temperature on degradation of anthocyanin in purple-fleshed sweet potato cultivars(Mokpo No.62, Borami, Jami, Sinjami and Ayamurasaki) were determined at pH ranges of 1 to 5 and temperature ranges of 20 to $80^{\circ}C$. The anthocyanin contents of five sweet potato varieties were 3.9, 3.8, 4.7, 4.1, 4.2 mg/g of dried sweet potato, respectively. Degradations of anthocyanins at different pHs and temperatures followed the first-order reaction. Our results clearly showed that the anthocyanin stability of purple-fleshed sweet potato was dependent on the source of the sweet potato cultivars. Anthocyanin obtained from Borami showed the highest stability. The half-life of antocyanin degradation of purple sweet potato cultivars(Mokpo No.62, Borami, Jami, Sinjami and Ayamurasaki) at pH 3 were 22.2, 28.3, 26.3, 23.4, 22.7 days at $60^{\circ}C$, respectively. A significant decrease in anthocyanin stability was observed at temperatures above $40^{\circ}C$. Activation energies of purple-fleshed sweet potato cultivars at different temperatures were 54.67, 60.93, 71.73, 59.35, 62.28 kJ/mol, respectively.

Changes in Sugar Content of Sweet Potato by Different Cooking Methods (조리방법에 따른 고구마의 당 함량 변화)

  • 서형주;정수현;최양문;배송환;김영순
    • Korean journal of food and cookery science
    • /
    • v.14 no.2
    • /
    • pp.182-187
    • /
    • 1998
  • The changes in weight, reducing sugar content, sugar composition and enzyme activities (${\beta}$-amylase and invertase) of sweet potato were studied with three kinds of cooking methods, microwave oven, gas oven, and steaming. The weights of sweet potato cooked by microwave oven and gas oven were decreased with increasing cooking time, whereas that of steaming was increased with cooking time. Reducing sugar content of sweet potato cooked by microwave oven was increased till 40 seconds, but decreased thereafter. In the cooking methods using gas oven and steaming, reducing sugar content were increased with cooking time. And reducing sugar content were 334.60 mg/g and 381.29 mg/g, respectively at 100$^{\circ}C$ of cold point in sweet potato cooked by gas oven and steaming. Raw sweet potato consisted of fructose (1.56 mg/g), glucose (1.79 mg/g), sucrose (5.58 mg/g), and maltose (2.22 mg/g). The contents of fructose, glucose, and sucrose were decreased during cooking process. But maltose content was increased with cooking time. Especially, maltose contents were 24.81 mg/g and 28.10 mg/g at 100$^{\circ}C$ of cold point in sweet potato cooked by gas oven and steaming. The activities of ${\beta}$-amylase and invertase were decreased with cooking time. Microwave oven-cooked sweet potato did not show on invertase activity.

  • PDF

Manufacture and Physiological Functionality of Korean Traditional Liquor by Using Purple-fleshed Sweet Potato (자색고구마를 이용한 민속주의 제조 및 생리 기능성)

  • Han, Kyu-Heung;Lee, Ju-Chan;Lee, Ga-Soon;Kim, Jae-Ho;Lee, Jong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.673-677
    • /
    • 2002
  • To develop a new traditional liquors using purple-fleshed sweet potato, the condition of alcohol fermentation was investigated by adding different concentrations $(5{\sim}75%)$ of cooked purple-fleshed sweet potato into mash and 10% nuruk, and fermenting for $5{\sim}15$ days. The maximum amount of ethanol (15.4%) was produced when 20% cooked purple-fleshed sweet potato and 10% nuruk were added into mash and fermented by S. cerevisiae at $25^{\circ}C$ for 15 days. The acceptability and physiological functionalities of the purple-fleshed sweet potato liquors were also investigated and compared. PSP-10 purple-fleshed sweet potato liquor prepared by adding 10% cooked purple-fleshed sweet potato into mash showed the best acceptability in the sensory evaluation test and color test $(pink{\sim}red)$; its fibrinolytic, electron-donating, and tyrosinase inhibitory activities were better than those of other purple-fleshed sweet potato liquors and wine.

Antioxidant and Neuronal Cell Protective Effect of Purple Sweet Potato Extract (자색고구마 추출물의 항산화 효과 및 신경세포 보호효과)

  • Kwak, Ji-Hyun;Choi, Gwi-Nam;Park, Ju-Hee;Kim, Ji-Hye;Jeong, Hee-Rok;Jeong, Chang-Ho;Heo, Ho-Jin
    • Journal of agriculture & life science
    • /
    • v.44 no.2
    • /
    • pp.57-66
    • /
    • 2010
  • The antioxidant and neuronal cell protective effects of water extract from purple sweet potato were investigated. The total phenolics and monomeric anthocyanin contents of purple sweet potato extract were 44.25 mg/g and 2,394 mg/L, respectively. The antioxidant activities of purple sweet potato extract were evaluated using various antioxidant tests, including 1,1-diphenyl- 2-picrylhydrazyl (DPPH), 2,2'-azino- bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, ferric reducing/antioxidant power (FRAP) and reducing power. In these assays, the extract of purple sweet potato presented significant radical scavenging activities, FRAP, and reducing power in a dose-dependent manner. MTT {3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl- tetrazoliumbromide} reduction assay showed significantly increase in cell viability when PC12 cells were pretreated with purple sweet potato extract. Because oxidative stress is also known to increase neuronal cell membrane breakdown, we further investigated by lactate dehydrogenase (LDH) and neutral red uptake assay. Purple sweet potato extract inhibited oxidative stress-induced membrane damage in neuronal cells. Therefore, these data results demonstrated that water extract of purple sweet potato have antioxidant activity and neuronal cell protective effect thus it has great potential as a natural source for human health.

Characteristics of Edible Films Based with Various Cultivars of Sweet Potato Starch (고구마 전분을 이용한 가식성 필름의 제조와 특성)

  • Lee, Jung-Ju;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.834-842
    • /
    • 2000
  • In order to investigate the characteristics of various sweet potato starches, gelatinization temperatures, solution viscosity of starch separated from two cultivars of the dry type sweet potatoes(Yulmi and Gunmi), one cultivar of moist type sweet potato(Jinmi), and one cultivar of purple colored variety(Jami) were compared, and properties of the edible films prepared with the starches were determined. Under a differential scanning colorimetry(DSC), initial temperatures for starch gelatinization of the dry type sweet potatoes (Yulmi and Gunmi) were higher than that of the moist type sweet potato (Jinmi), and that of Jami was close to those of the dry type ones. The sweet potato starch solutions tested by a cone and plate viscometer, showed peudoplastic characteristics. The moist type sweet potato was the most viscous followed by Jami, Yulmi, and Gunmi among the tested starch solutions. Total color difference of the edible films prepared with different cultivars of sweet potatoes showed appreciable differences between cultivars, caused by differences in Hunterb values. Water Vapor Permeability (WVP) of sweet potato starch films also showed significant differences between cultivars. Films prepared with the dry type sweet potato, Gunmi, showed the lowest WVP value of $0.83{\times}10^{-9}\;g\;{\cdot}\;m/m^{2}\;{\cdot}\;s\;{\cdot}\;Pa$, followed by Jami, Yulmi, and Jinmi. Water solubility of the films did not show any significant differences between cultivars. Tensile strength of the dry type sweet potato and Jami, which ranged 14.18-18.75 MPa, were higher than that of the moist type sweet potato, which was 4.66 MPa. Elongation values of the films, which were 5-6%, indicated that sweet potato starch films were not so elastic.

  • PDF

Quality and Antioxidant Properties of Fermented Sweet Potato Using Lactic Acid Bacteria (유산균을 이용한 발효 고구마의 품질 특성 및 항산화 활성)

  • Ha, Gi Jeong;Kim, Hyeon Young;Ha, In Jong;Cho, Sung Rae;Moon, Jin Young;Seo, Gwon Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.5
    • /
    • pp.494-503
    • /
    • 2019
  • The purpose of this study was to investigate the quality and antioxidant properties of three fermented sweet potato cultivars (Shinyulmi, Hogammi, and Shinjami) using lactic acid bacteria. During the fermentation, the pH was lowered and the titratable acidity increased. The viable cell counts of lactic acid bacteria increased 8.44-9.62 log CFU/g. Organic acid content (especially lactic acid) of sweet potatoes increased by fermentation. Also, ${\gamma}$-Aminobutyric acid increased more than 8.6 times by fermentation in all samples. The total polyphenol and flavonoid contents of sweet potato, showed insignificant changes in all samples by fermentation. ABTS radical scavenging activity of all samples slightly decreased by fermentation, but not significantly. DPPH radical scavenging activity decreased slightly by fermentation except Shinyulmi. However, when compared with the varieties, Shinjami showed the highest activity. The reducing power of Shinjami decreased slightly by fermentation, but activity was the highest among all samples. Based on these results, most of the chemical properties and functionality of fermented sweet potato are retained after fermentation, although some antioxidant activity decreases. We suggest that three fermented sweet potato cultivars (Shinyulmi, Hogammi, and Shinjami) using lactic acid bacteria can be used in various applications because of their effective functional properties.