• Title/Summary/Keyword: sway angle

Search Result 94, Processing Time 0.028 seconds

Effects of Plantar sole Vibration using Various Frequencies on Postural Response During Standing (기립상태에서 발바닥에 인가한 진동자극의 주파수에 따른 자세균형 응답)

  • Yu, Mi;Piao, Yang-Jun;Kim, Dong-Wook;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.247-254
    • /
    • 2009
  • We studied the postural response induced by plantar sole vibration with various frequencies(20, 60, 100Hz) and vibration zone(the anterior and posterior foot zone) of both soles during standing. Eight healthy young adults were exposed to 15s periods of plantar sole vibration while blindfolded. Body sway(COM, center of mass), the angle of neck, trunk, hip, knee, ankle and EMG of four lower limb muscles(tibialis anterior, lateral and medial gastrocnemial, soleus muscle) were recorded during 15s plantar sole vibration using 3D motion analysis system. Simulating each zone separately resulted in spatially oriented body tilts; oppositely directed backward and forward, respectively, the amplitude of which was proportional to the vibration frequency. EMG activity of lower limb muscles also varied according to the direction of the vibration zone and linearly according to the frequency. These findings led us to consider the plantar sole vibration as useful method of postural balance control and adjustment.

The Effect of Lower Limb Resistance Exercise Using a Kinetic Chain on Gait in Stroke Patients (운동 사슬에 따른 하지 저항운동이 뇌졸중 환자의 보행에 미치는 영향)

  • Oh, Yongseop;Hur, Younggoo
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.2
    • /
    • pp.165-179
    • /
    • 2019
  • Purpose : The purpose of this study is to improve the stroke patient's gait ability by applying a closed or kinetic chain lower limb exercise Methods : The study subjects were 48 hospitalized hemiplegic patients who agreed to participate in the study. 48 subjects went through the intervention: 24 in the experimental group and 24 in the control group. One set consisted of 10 repeats of the exercise. The subjects performed three sets of the exercise once a day, 5 times a week, for 6 weeks. Results : TUG and FGA were significantly improved in the experimental group. The spatio-temporal gait variables in the experimental group all showed significant improvement. In the control group, velocity, cadence, and double limb support showed significant improvement, Trunk sway angle showed significant improvement in all three axes in both groups. Conclusion : The results of this study indicate that a more positive effect in terms of improvement of the stroke patient's gait ability will be seen for closed rather than open kinetic chain lower limb resistance exercise.

The Effect of the Cervical Stabilization Exercise on Balance and Neck Functional Capacities in Community-dwelling Older Adults

  • Yi, Donghyun;Choi, Wonjae;Lee, SeungWon
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 2022
  • Objective: Flexed posture commonly increases with age in older adults and is characterized by kyphosis and forward head posture. Changes in the posture with age affect both balance and mobility. This study was conducted to examine the effects of a cervical stabilization exercise for community-dwelling older adults to improve balance. Design: Two groups pretest-posttest design. Methods: Fifty older adults were randomly assigned into the cervical stabilization exercise group (n=24) and control group (n=25). The cervical stabilization exercise group (n=24) participated in group exercise for 60 minutes twice a week over 4 weeks. Timed up and go test (TUG), four square step test (FSST), functional reach test (FRT), postural sway, cervical range of motion (CROM), proprioception, craniovertebral angle (CVA) were evaluated before and after the intervention. Results: TUG, FSST, FRT, CROM, Proprioception, CVA showed significantly greater improvement, compared with a control group (p<0.05). Conclusions: Findings of this study demonstrate that cervical stabilization exercise can help improve not only neck functional capacities but also balance. Therefore, it may be used as an effective balance exercise program for community-dwelling older adults.

A Study on the Proper Crown Height of GT 100,000Ton Cruise ship and DWT 100,000Ton Container ship (10만톤급 크루즈선과 컨테이너선의 적정 마루높이에 관한 연구)

  • Kim, Seungyeon;Lee, Yunsok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.157-162
    • /
    • 2018
  • The increase of risk in port due to the increase in ship size and sea level rises, the standard crown height will increase. In this study, cruise and container ships will need to raise their crown height due to the projected wind pressure areas becoming larger due to the ships' size increase. The mooring assessment was evaluated with the rise of the crown height. The cruise ship of GT 100,000 tons exceeded the permissible breaking force of the mooring line under the crown height conditions of wind speed of 30 kts when the wind direction was $45^{\circ}$ to the direction of the bow. Also, the elevation angle of the pier and mooring line was analyzed and exceeded the crown height, and it was determined that it is necessary to adjust the crown height. Container ships of DWT 100,000 tons were analyzed to exceed the limit of sway motion at the crown height and it was determined that they need to be adjusted to the minimum crown height standard.

The Effects of Shoes with Curved Out-Sole on the Variations of Static Posture and EMG of Calf (유선형 신발이 정적 자세변화 및 하퇴근전도에 미치는 효과)

  • Shin, Hak-Soo;Eun, Seon-Deok;Yu, Yeon-Joo
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.245-253
    • /
    • 2008
  • The purpose of this study was to analyze the effects of shoes with curved out-sole on the posture variation and its control strategy. At first, Target shoes(s) was made by evaluating the static postures of 7-female university students via 'New York State Posture Test' on shoes which made the relative angle between foot surface and ground surface of shoe change. At second, we evaluated muscle activity for 30-female university students(10 persons-3 groups) on shoes which were s(target), m shoes with curved out-sole and n shoes with flat out-sole. 1. The posture scores on New York State Posture Test were statistically different according to the relative angle changes, and the best angle for score was -7 degree but, the scores charts were like two humped camel at -2, -7degree. we made the shoe with -7 degree and curved out-sole. 2. s, m shoes with curved out-sole had graded muscle activities but, static posture on bare foot, there were the graded activity on gastrocnemius for s shoes and tibialis anterior for m shoes, but on shoes, only Gastrocnemius for s shoes.

Nonlinear response of stiffened triceratops under impact and non-impact waves

  • Chandrasekaran, Srinivasan;Nassery, Jamshed
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.179-193
    • /
    • 2017
  • Dynamic response analysis of offshore triceratops with stiffened buoyant legs under impact and non-impact waves is presented. Triceratops is relatively new-generation complaint platform being explored in the recent past for its suitability in ultra-deep waters. Buoyant legs support the deck through ball joints, which partially isolate the deck by not transferring rotation from legs to the deck. Buoyant legs are interconnected using equally spaced stiffeners, inducing more integral action in dispersing the encountered wave loads. Two typical nonlinear waves under very high sea state are used to simulate impact and non-impact waves. Parameters of JONSWAP spectrum are chosen to produce waves with high vertical and horizontal asymmetries. Impact waves are simulated by steep, front asymmetric waves while non-impact waves are simulated using Stokes nonlinear irregular waves. Based on the numerical analyses presented, it is seen that the platform experiences both steady state (springing) and transient response (ringing) of high amplitudes. Response of the deck shows significant reduction in rotational degrees-of-freedom due to isolation offered by ball joints. Weak-asymmetric waves, resulting in non-impact waves cause steady state response. Beat phenomenon is noticed in almost all degrees-of-freedom but values in sway, roll and yaw are considerably low as angle of incidence is zero degrees. Impact waves cause response in higher frequencies; bursting nature of pitch response is a clear manifestation of the effect of impact waves on buoyant legs. Non-impact waves cause response similar to that of a beating phenomenon in all active degrees-of-freedom, which otherwise would not be present under normal loading. Power spectral density plots show energy content of response for a wide bandwidth of frequencies, indicating an alarming behaviour apart from being highly nonlinear. Heave, being one of the stiff degrees-of-freedom is triggered under non-impact waves, which resulted in tether tension variation under non-impact waves as well. Reduced deck response aids functional requirements of triceratops even under impact and non-impact waves. Stiffened group of buoyant legs enable a monolithic behaviour, enhancing stiffness in vertical plane.

Effects of Rhythmic Auditory Stimulation Using Music on Gait With Stroke Patients

  • Oh, Yong-seop;Kim, Hee-soo;Woo, Young-keun
    • Physical Therapy Korea
    • /
    • v.22 no.3
    • /
    • pp.81-90
    • /
    • 2015
  • This study aimed to determine the effects of Rhythmic Auditory Stimulation (RAS) using music and a metronome on the gait of stroke patients. 13 female and 15 male volunteers were randomly allocated to two groups: namely a group to receive RAS using music and a metronome group (the experimental group; $n_1=14$) and a group to receive RAS using a metronome only (the control group; $n_2=14$). The affected side was the left side in 15 subjects and the right side in 13 subjects. The mean age of the subjects was 56.6 years, and the mean onset duration of stroke was 8.6 months. Intervention was applied for 30 minutes per session, once a day, 5 times a week for 4 weeks. To measure the patients' gait improvement, we measured gait velocity, cadence, stride length, double limb support using GAITRite, body center sway angle using an accelerometer, and Timed Up-and-Go test. Functional Gait Assessment were conducted before and after the experiment. The paired t-test was used for comparisons before and after the interventions in each group. Analysis of covariance was used for comparisons between the groups after the interventions. Statistical significance was set at ${\alpha}=.05$. Within each of the two groups, significant differences in all of the dependent variables before and after the experiment (p<.05) were observed. However, in the comparison between the two groups, the experimental group showed more significant improvements in all dependent variables than the control group (p<.05). Our results also suggest that in applying RAS in stroke patients, the combination of music and a metronome is more effective than using a metronome alone in improving patients' gait.

Sliding-Mode Control of Container Cranes (컨테이너크레인 시스템의 슬라이딩모드제어)

  • Lee Suk-Jae;Park Hahn;Hong Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.747-753
    • /
    • 2005
  • In this paper, as an anti-sway control strategy of container cranes, we investigate a variable structure control in which the moving load follows a given trajectory, whereas both the trolley and hoist controllers achieve their positioning problems. It is crucial, in an automated container terminal, that collisions should be avoided during the transference of containers from one place to another. It is also necessary, in the case of a quay crane, to select suitable loading and unloading trajectories of containers, so that possible collisions with surrounding obstacles are avoided. After a brief introduction of the mathematical model, a robust control scheme (i.e., a second-order sliding mode control that guarantees a fast and precise transference and a suppression of the resulted swing) is presented. Despite model uncertainties and unmodeled actuators dynamics, the swing suppression from the given trajectory is obtained by constraining the system motion on suitable sliding surfaces, which include both the desired path and the swing angle. The proposed controller has been tested with a laboratory-size pilot crane. Experimental results are provided.

The Correlation between Static and Dynamic Balance Index according to the Virtual Reality-Based Squat and Conventional Squat Exercise (가상현실기반과 고전적 스쿼트 운동 방법에 따른 정적, 동적 균형지수 간 상관분석)

  • Yoon, Junggyu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Purpose : The purpose of this study was to examine the correlation between static and dynamic balance according to the virtual reality-based squat and conventional squat exercise. Methods : Twenty four participants were randomly assigned to the virtual reality-based squat (VRS) group (n=12) or conventional squat (CS) group (n=12). The static balance (C90 area, C90 angle, trace length, sway average velocity) and dynamic balance (forward, rearward, leftward, rightward) were measured using a force plate by BT4. The VRS group used the virtual reality system during 4 weeks, while the CS group underwent classical squat training. Independent t-test was used to test the homogeneity of the general characteristics of the subjects. The collected data was analyzed using the paired t-test for static and dynamic balance comparisons before and after exercise in both groups and Pearson's test for the correlation between static and dynamic balance according to the measured time. The significance level was set to 0.05. Results : There was no significant correlation between group and static and dynamic balance related variables (p>.05). There was a significant correlation between measurement time and static and dynamic balance related variables (p<.05). According to the measurement time, the static balance parameter C90 area in the VRS group after exercise was significantly decreased (p<.05). The values of forward, leftward and rightward in the VRS group were significantly increased after exercise (p<.05). Conclusion : It is suggested that 20 normal healthy adult men and women who have normal balance ability can improve their ability to control their posture by improving the balance ability when applying virtual reality-based squat exercise.

Development of Ship Dynamics Model by Free-Running Model Tests and Regression (자유항주모형시험과 회귀분석을 통한 선체 동역학 모델의 개발)

  • Kim, Kiwon;Kim, Hoyong;Choi, Sungeun;Na, Ki-In;Lee, Hyuk;Seo, Jeonghwa
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • The present study suggests a procedure of establishing a ship dynamics modeling by regression of free-running model test results. The hydrodynamic force and moment of the whole model ship is derived from the low-pass filtered acceleration in the turning circle and zigzag maneuver tests. Force and moment of the propeller and rudder are separated from that of the whole ship to acquire the hull force and moment terms, based on the principles of the component model. The low-pass filter frequency is verified in prior to dynamics modeling, to find the threshold frequency of 2.5 Hz. The dynamics modeling of the hull is compared with the component modeling by captive model tests. Because of strong correlation between sway velocity, yaw angular velocity, and heel angle, each maneuvering coefficient is not able to be validated, but the whole modeling shows good agreement with the captive model tests.