• Title/Summary/Keyword: swarm system

Search Result 374, Processing Time 0.024 seconds

A Novel Method for Virtual Machine Placement Based on Euclidean Distance

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2914-2935
    • /
    • 2016
  • With the increasing popularization of cloud computing, how to reduce physical energy consumption and increase resource utilization while maintaining system performance has become a research hotspot of virtual machine deployment in cloud platform. Although some related researches have been reported to solve this problem, most of them used the traditional heuristic algorithm based on greedy algorithm and only considered effect of single-dimensional resource (CPU or Memory) on energy consumption. With considerations to multi-dimensional resource utilization, this paper analyzed impact of multi-dimensional resources on energy consumption of cloud computation. A multi-dimensional resource constraint that could maintain normal system operation was proposed. Later, a novel virtual machine deployment method (NVMDM) based on improved particle swarm optimization (IPSO) and Euclidean distance was put forward. It deals with problems like how to generate the initial particle swarm through the improved first-fit algorithm based on resource constraint (IFFABRC), how to define measure standard of credibility of individual and global optimal solutions of particles by combining with Bayesian transform, and how to define fitness function of particle swarm according to the multi-dimensional resource constraint relationship. The proposed NVMDM was proved superior to existing heuristic algorithm in developing performances of physical machines. It could improve utilization of CPU, memory, disk and bandwidth effectively and control task execution time of users within the range of resource constraint.

A study on the security threat and security requirements for multi unmanned aerial vehicles (무인기 군집 비행 보안위협 및 보안요구사항 연구)

  • Kim, Mansik;Kang, Jungho;Jun, Moon-seog
    • Journal of Digital Convergence
    • /
    • v.15 no.8
    • /
    • pp.195-202
    • /
    • 2017
  • Unmanned Aerial Vehicles (UAV) have mostly been used for military purposes but with the progress in ICT and reduced manufacturing costs, they are increasingly used for various private services. UAVs are expected to carry out autonomous flying in the future. In order to carry out complex tasks, swarm flights are essential. Although the swarm flights has been researched a lot due to its different network and infrastructure from the existing UAV system, There are still not enough study on security threats and requirements for the secure swarm flights. In this paper, to solve these problems, UAV autonomous flight technology is defined based on US Army Corps of Engineers (USACE) and Air Force Research Laboratory (AFRL), and swarm flights and security threat about it are classified. And then we defined and compared security requirements according to security threats of each swarm flights so as to contribute to the development of secure UAC swarm flights in the future.

Behavior Learning of Swarm Robot System using Bluetooth Network

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.1
    • /
    • pp.10-15
    • /
    • 2009
  • With the development of techniques, robots are getting smaller, and the number of robots needed for application is greater and greater. How to coordinate large number of autonomous robots through local interactions has becoming an important research issue in robot community. Swarm Robot Systems (SRS) is a system that independent autonomous robots in the restricted environments infer their status from pre-assigned conditions and operate their jobs through the cooperation with each other. In the SRS, a robot contains sensor part to percept the situation around them, communication part to exchange information, and actuator part to do a work. Especially, in order to cooperate with other robots, communicating with other robots is one of the essential elements. Because Bluetooth has many advantages such as low power consumption, small size module package, and various standard protocols, it is rated as one of the efficient communicating technologies which can apply to small-sized robot system. In this paper, we will develop Bluetooth communicating system for autonomous robots. And we will discuss how to construct and what kind of procedure to develop the communicating system for group behavior of the SRS under intelligent space.

Optimal Trajectory Modeling of Humanoid Robot for Argentina Tango Walking

  • Ahn, Doo-Sung
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.41-47
    • /
    • 2017
  • To implement Argentina tango dancer-like walking of the humanoid robot, a new trajectory generation scheme based on particle swarm optimization of the blending polynomial is presented. Firstly, the characteristics of Argentina tango walking are derived from observation of tango dance. Secondly, these are reflected in walking pose conditions and cost functions of particle swarm optimization to determine the coefficients of blending polynomial. For the stability of biped walking, zero moment point and reference trajectory of swing foot are also included in cost function. Thirdly, after tango walking cycle is divided into 3 stages with 2 postures, optimal trajectories of ankles, knees and hip of lower body, which include 6 sagittal and 4 coronal angles, are derived in consequence of optimization. Finally, the feasibility of the proposed scheme is validated by simulating biped walking of humanoid robot with derived trajectories under the 3D Simscape environment.

Improved Particle Swarm Optimization Algorithm for Adaptive Beam Forming System (적응형 빔 형성 시스템을 위한 개선된 개체 군집 최적화 알고리즘)

  • Jung, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.587-592
    • /
    • 2018
  • An adaptive beam forming system using a phased array antenna improves communication quality by beam forming adaptively to a communication environment having an interference signal. For adaptive beam forming, a good combination of the phases of the excited signals to each radiating element of the phased array antenna should be calculated. In this paper, improved particle swarm optimization algorithm that adds a re-spreading procedure according to particle density was proposed to increase the probability of good phase shift combination output.

Comparison of Particle Swarm Optimization and the Genetic Algorithm in the Improvement of Power System Stability by an SSSC-based Controller

  • Peyvandi, M.;Zafarani, M.;Nasr, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.182-191
    • /
    • 2011
  • Genetic algorithms (GA) and particle swarm optimization (PSO) are the most famous optimization techniques among various modern heuristic optimization techniques. These two approaches identify the solution to a given objective function, but they employ different strategies and computational effort; therefore, a comparison of their performance is needed. This paper presents the application and performance comparison of the PSO and GA optimization techniques for a static synchronous series compensator-based controller design. The design objective is to enhance power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem, and both PSO and GA optimization techniques are employed to search for the optimal controller parameters.

Improved Performance of Permanent Magnet Synchronous Motor by using Particle Swarm Optimization Techniques

  • Elwer, A.S.;Wahsh, S.A.
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.207-214
    • /
    • 2009
  • This paper presents a modem approach for speed control of a PMSM using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the PI-Controller. The overall system simulated under various operating conditions and an experimental setup is prepared. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. Comparison between different controllers is achieved, using a PI controller which is tuned by two methods, firstly manually and secondly using the PSO technique. The system is tested under variable operating conditions. Implementation of the experimental setup is done. The simulation results show good dynamic response with fast recovery time and good agreement with experimental controller.

Prewarping Techniques Using Fuzzy system and Particle Swarm Optimization (퍼지 시스템과 Particle Swarm Optimization(PSO)을 이용한 Prewarping 기술)

  • Jang, Woo-Seok;Kang, Hwan-Il;Lee, Byung-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.367-370
    • /
    • 2007
  • In this paper, we concentrate on the mask design problem for optical micro-lithography. The pre-distorted mask is obtained by minimizing the error between the designed output image and the projected output image. We use the particle swarm optimization(PSO) and fuzzy system to insure that the resulting images are identical to the desired image. Our method has good performance for the iteration number by an experiment.

  • PDF

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.

Fast Video Data Encryption for Swarm UAVs Using Hybrid Crypto-system (하이브리드 암호시스템을 이용한 군집 영상의 고속 암호화)

  • Cho, Seong-Won;Kim, Jun-Hyeong;Chae, Yeo-Gyeong;Joung, Yu-Min;Park, Tae-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.602-609
    • /
    • 2018
  • This paper proposes the hybrid crypto-system for fast video data encryption of UAV(Unmanned Aerial Vehicle) under the LTE(Long-Term Evolution) wireless communication environment. This hybrid crypto-system is consisted of ECC(Elliptic Curve Cryptography) public key algorithm and LEA(Light-weight Encryption Algorithm) symmetric key algorithm. ECC is a faster public key algorithm with the same security strength than RSA(Rivest Shamir Adleman), and Korean standard LEA with the same key size is also a faster symmetric key algorithm than AES(Advances Encryption Standard). We have implemented this hybrid crypto-system using OpenSSL, OpenCV and Socket programs under the Swarm 8-UAV. We have shown the efficient adaptability of this hybrid crypto-system for the real-time swarm UAV through the experiments under the LTE communication environment.