• 제목/요약/키워드: swarm robot control

검색결과 57건 처리시간 0.023초

인공면역계 기반의 자율이동로봇군의 협조행동전략 결정 (Artificial immune network-based cooperative beharior strategies in collective autonomous mobile rotos)

  • 이동욱;심귀보
    • 전자공학회논문지S
    • /
    • 제35S권3호
    • /
    • pp.102-109
    • /
    • 1998
  • In this paper, we propose a method of cooperative control based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment.For the purpose of applying immune system to DARS, a robot is regarded as a B lymphocyte(B cell), each environmental condition as an antigen, and a behavior strategy as an antibody respectively. The executing process of proposed method is as follows. When the environmental codintion changes, a robot select an appropriate beharior stategy. And its behavior stategy is stimulated and suppressed by other robot using communiation. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and idotopic network hypothesis. And it is used for decision making of optimal swarm stragegy.

  • PDF

진화적 상호작용을 이용한 군집로봇의 환경적응 (Environment Adaptation using Evolutional Interactivity in a Swarm of Robots)

  • 문우성;장진원;백광렬
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.227-232
    • /
    • 2010
  • In this paper we consider the multi-robot system that collects target objects spread in an unexplored environment. The robots cooperate each other to improve the capability and the efficiency. The robots attract or intimidate each other as behaviors of bacterial swarms or particles with electrical moments. The interactions would increase the working efficiency in some environments but it would decrease the efficiency in some other environments. Therefore, the system needs to adapt to the working environment by adjusting the strengths of the interactions. The strengths of the interactions are expressed as sets of gene codes that mean the weights of each kind of attracting or intimidating vectors. The proposed system adjusts the gene codes using evolutional strategy. The proposed approach has been validated by computer simulation. The results of this paper show that our inter-swarm interacting strategy and optimizing algorithm improves the working efficiency, adaptively to the characteristics of environments.

무선 센서 네트워크 기반 군집 로봇의 협조 행동을 위한 위치 측정 (Localization for Cooperative Behavior of Swarm Robots Based on Wireless Sensor Network)

  • 탁명환;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제18권8호
    • /
    • pp.725-730
    • /
    • 2012
  • In this paper, we propose the localization algorithm for the cooperative behavior of the swarm robots based on WSN (Wireless Sensor Network). The proposed method is as follows: First, we measure positions of the L-bot (Leader robot) and F-bots (Follower robots) by using the APIT (Approximate Point In Triangle) and the RSSI (Received Signal Strength Indication). Second, we measure relative positions of the F-bots against the pre-measured position of the L-bot by using trilateration. Then, to revise a position error caused by noise of the wireless signal, we use the particle filter. Finally, we show the effectiveness and feasibility of the proposed method though some simulations.

곡률 반경을 이용한 군집 로봇의 대형 제어 (Formation Control for Swarm Robot using Radius of Curvature)

  • 강동우;송영훈;이석;이경찬
    • 한국정밀공학회지
    • /
    • 제31권11호
    • /
    • pp.1023-1030
    • /
    • 2014
  • This paper presents a new method to control swarm robots so that they can keep the formation while following a curved path. The main idea is to utilize the information on the instant center of gyration. For a given path, location of the instant center of the formation center is calculated, and individual robots follow the circular path around the calculated instant center. Performance of curvature-radius based method is compared with leader-follower referenced method via MATLAB simulation.

Biped Walking of a Humanoid Robot for Argentina Tango

  • Ahn, Doo-Sung
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권4호
    • /
    • pp.52-58
    • /
    • 2016
  • The mechanical design for biped walking of a humanoid robot doing the Argentina Tango is presented in this paper. Biped walking has long been studied in the area of robotic locomotion. The aim of this paper is to implement an Argentina Tango dancer-like walking motion with a humanoid robot by using a trajectory generation scheme. To that end, this paper uses blending polynominals whose parameters are determined based on PSO (Particle Swarm Optimization) according to conditions that make the most of the Argentina Tango's characteristics. For the stability of biped walking, the ZMP (Zero Moment Point) control method is used. The feasibility of the proposed scheme is evaluated by simulating biped walking with the 3D Simscape robot model. The simulation results show the validity and effectiveness of the proposed method.

인공면역 시스템 기반 자율분산로봇 시스템의 협조 전략과 군행동 (Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems based on Artificial Immune System)

  • 심귀보
    • 한국지능시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.627-633
    • /
    • 1999
  • 본 논문에서는 면역 시스템에 기반한 자율분산로봇 시스템의 협조 제어 및 군행동 전략의 결정 방법을 제안한다. 면역 시스템은 생체의 자기보호 및 유지시스템이다. 면역 시스템의 유용한 성질은 동적으로 변하는 환경에서 최적의 군행동을 결정하는 문제에 적용 가능하다. 면역 시스템을 자율분산로봇 시스템에 적용하기 위하여 로봇은 B-세포로 환경조건은 항원으로 행동 전략은 항체로 제어파라미터는 T-세포로 각각 모델링 하였다, 환경(항원)변화가 감지되면 각 로봇은 적절한 행동전략(항체)을취한다. 이행동전략은 다른 로봇과의 통신에 의하여 자극 또는 억제을 받는다.(면역 네트워크) 최정적으로 많은 자극을 받은 전략이 군행동 전략으로 채택된다. 이 제어방법은 클론선택과 면역네트워크 가설에 기반을 둔것으로서 최적의 군행동 전략을 결정하는데 이용된다. 또한 제어 파라미터로서 T-세포 모델을 추가함으로서 동적인 환경에서 로봇의 적응능력이 향상되었다.

  • PDF

A Fuzzy-Neural Network Based Human-Machine Interface for Voice Controlled Robots Trained by a Particle Swarm Optimization

  • Watanabe, Keigo;Chatterjee, Amitava;Pulasinghe, Koliya;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.411-414
    • /
    • 2003
  • Particle swarm optimization (PSO) is employed to train fuzzy-neural networks (FNN), which can be employed as an important building block in real life robot systems, controlled by voice-based commands. The FNN is also trained to capture the user spoken directive in the context of the present performance of the robot system. The system has been successfully employed in a real life situation for navigation of a mobile robot.

  • PDF

원유유출 방재로봇의 컨셉디자인 (Conceptual Design of Oil Spill Protection Robot)

  • 김지훈;김명석
    • 로봇학회논문지
    • /
    • 제3권4호
    • /
    • pp.345-350
    • /
    • 2008
  • This study aims to propose the concept design of oil spill protection robot which can rapidly intervene to control the oil spillage situation at the sea. Taking into account the fact that a huge amount of oil is transported trans-continentally by oil tanker, none of industrialized countries are completely safe from the marine oil spill which results in social, economical and ecological damages to their communities. The employment of double hull-oil tanker, pipe line transporting can be most safe way. Yet complete prevention of oil spill is probably not realistic. Accordingly the alternative solution to control marine oil spill and minimize the damages caused by the incident using intelligent robot technology based on swarm control method is proposed. The main features of oil spill protection(OSP) robot is explained via following three perspectives. Firstly, from functional point of view, OSP robot system safely and efficiently replaces oil boom installation manually conducted by human workers with intelligent robot technology based on swarm control theory. For second, its modular architecture brings efficient storage of main components including oil boom and facilitates maintenance. For the last, its geometric form and shape enables whole system to be installed to helicopter, boat or oil tanker itself with ease and to rapidly deploy the units to the oil spill area.

  • PDF

최적화 기법을 이용한 로봇핸드 트래킹 모델의 파라미터 추정 (Parameter Identification of Robot Hand Tracking Model Using Optimization)

  • 이종광;이효직;윤광호;박병석;윤지섭
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.467-473
    • /
    • 2007
  • In this paper, we present a position-based robot hand tracking scheme where a pan-tilt camera is controlled such that a robot hand is always shown in the center of an image frame. We calculate the rotation angles of a pan-tilt camera by transforming the coordinate systems. In order to identify the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. From the simulation results, it is shown that the considered parameter identification problem is characterized by a highly multimodal landscape; thus, a global optimization technique such as a particle swarm optimization could be a promising tool to identify the model parameters of a robot hand tracking system, whereas the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum.

군집 로봇 기반 공간 탐색을 위한 행동 제어 알고리즘 (Behavior Control Algorithm for Space Search Based on Swarm Robots)

  • 탁명환;주영훈
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2152-2156
    • /
    • 2011
  • In this paper, we propose the novel behavior control algorithm by using the efficient searching method based on the characteristic of the swarm robots in unknown space. The proposed method consists of identifying the position and moving state of a robot by the dynamic modelling of a wheel drive vehicle, and planing behavior control rules of the swarm robots based on the sensor range zone. The cooperative search for unknown space is carried out by the proposed behavior control. Finally, some experiments show the effectiveness and the feasibility of the proposed method.