• Title/Summary/Keyword: swarm control

Search Result 235, Processing Time 0.028 seconds

Distributed Moving Algorithm of Swarm Robots to Enclose an Invader (침입자 포위를 위한 군집 로봇의 분산 이동 알고리즘)

  • Lee, Hea-Jae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.224-229
    • /
    • 2009
  • When swarm robots exist in the same workspace, first we have to decide robots in order to accomplish some tasks. There have been a lot of works that research how to control robots in cooperation. The interest in using swarm robot systems is due to their unique characteristics such as increasing the adaptability and the flexibility of mission execution. When an invader is discovered, swarm robots have to enclose a invader through a variety of path, expecting invader's move, in order to effective enclose. In this paper, we propose an effective swarm robots enclosing and distributed moving algorithm in a two dimensional map.

The Development of Artificial Intelligence-Enabled Combat Swarm Drones in the Future Intelligent Battlefield (지능화 전장에서 인공지능 기반 공격용 군집드론 운용 방안)

  • Hee Chae;Kyung Suk Lee;Jung-Ho Eom
    • Convergence Security Journal
    • /
    • v.23 no.3
    • /
    • pp.65-71
    • /
    • 2023
  • The importance of combat drones has been highlighted through the recent outbreak of the Russia-Ukraine war. The combat drones play a significant role as a a game changer that alters the conventional wisdom of traditional warfare. Many pundits expect the role of combat swarm drones would be more crucial in the future warfare. In this regard, this paper aims to analyze the development of artificial intelligence-enabled combat swarm drones. To transform the human-operated swarm drones into fully autonomous weaponry system our suggestions are as follows. Developments of (1) AI algorithms for optimized swarm drone operations, (2) decentralized command and control system, (3) inter-drones' mission analysis and allocation technology, (4) enhanced drone communication security and (5) set up of ethical guideline for the autonomous system. Specifically, we suggest the development of AI algorithms for drone collision avoidance and moving target attacks. Also, in order to adjust rapidly changing military environment, decentralized command and control system and mission analysis allocation technology are necessary. Lastly, cutting-edging secure communication technology and concrete ethical guidelines are essential for future AI-enabled combat swarm drones.

Development of Indoor Navigation Control System for Swarm Multiple AR.Drone's (실내 환경에서의 AR.Drone 군집 비행 시스템 개발)

  • Moon, SungTae;Cho, Dong-Hyun;Han, Sang-Hyuck;Rew, DongYoung;Gong, HyunCheol
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • Recently, small quadcopters have been widely used in various areas ranging from military to entertainment applications because interest in the quadcopter increases. Especially, the research on swarm flight which control quadcopters simultaneously without any collision can increase success probability of a important mission. In addition the swarm flight can be applied for demonstrating choreographed aerial maneuvers such as dancing and playing musical instruments. In this paper, we introduce multiple AR.Drone control system based on motion capture for indoor environment in which quadcopters can recognize current position each other and perform scenario based mission.

A Position Control of Seesaw System using Particle Swarm Optimization - PID Controller (PSO-PID를 이용한 시소 시스템의 위치제어)

  • Son, Yong Doo;Son, Jun Ik;Choo, Yeon Gyu;Lim, Young Do
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.185-188
    • /
    • 2009
  • In this paper, Position Controller for balance of Seesaw System design using PID Algorithm. Seesaw System is that it's system use widely to analyze of ship or flight dynamics, Inverted Pendulumand, Robot System, manage system for theory of modern control system and all sorts of analysis. In case of Seesaw System, it's necessity that understand and analysis of system and correct selection of parameter because the system is strong nonlinear control system. It guarantees efficiency and stability to adapt quickly for disturbance or change of controller from PID Algorithm of guarantee safe from simple and long history and PSO(Particle Swarm Optimization) that sort of metaheuristic optimization that need to accuracy and fast PID parameter tuning.

  • PDF

Design of Fractional Order Controller Based on Particle Swarm Optimization

  • Cao, Jun-Yi;Cao, Bing-Gang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.775-781
    • /
    • 2006
  • An intelligent optimization method for designing Fractional Order PID(FOPID) controllers based on Particle Swarm Optimization(PSO) is presented in this paper. Fractional calculus can provide novel and higher performance extension for FOPID controllers. However, the difficulties of designing FOPID controllers increase, because FOPID controllers append derivative order and integral order in comparison with traditional PID controllers. To design the parameters of FOPID controllers, the enhanced PSO algorithms is adopted, which guarantee the particle position inside the defined search spaces with momentum factor. The optimization performance target is the weighted combination of ITAE and control input. The numerical realization of FOPID controllers uses the methods of Tustin operator and continued fraction expansion. Experimental results show the proposed design method can design effectively the parameters of FOPID controllers.

Formation Control for Swarm Robots Using Artificial Potential Field (인공 포텐셜 장을 이용한 군집 로봇의 대형 제어)

  • Kim, Han-Sol;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.476-480
    • /
    • 2012
  • In this paper, artificial potential field(APF) is applied to formation control for the leader-following swarm robot. Furthermore, APF is constructed by applying the electrical field model. Moreover, to model the obstacle effectively, each obstacle has different form due to the electrical field equation. The proposed method is formed as two sub-objective: path planning for the leader-robot and following-robots following the leader-robot. Finally, simulation example is given to prove the validity of proposed method.

Swarm-bot Manufacture and System Control (스웜봇의 제작 및 시스템 제어)

  • Jeong, Su-Yeon;Lee, Seung-Won;Park, Jae-Sun;Kim, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.163-172
    • /
    • 2007
  • A swarm-bot docking with two independent robots aiming at overcoming obstacles or climbing up/down stairs is introduced how it can be manufactured and controlled. Utilizing the fast mobility of the vehicle robot and cooperating between robots expands the applications of the robot. An algorithm for identifying the partner robot and its generic mechanism enabling the docking of two robots are addressed. The designed swarm-bot has advantages in terms of overcoming obstacle or stair climbing which is not easily implemented by a single robot, increasing the adaptability to the environment.

Improved Performance of Permanent Magnet Synchronous Motor by using Particle Swarm Optimization Techniques

  • Elwer, A.S.;Wahsh, S.A.
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.207-214
    • /
    • 2009
  • This paper presents a modem approach for speed control of a PMSM using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the PI-Controller. The overall system simulated under various operating conditions and an experimental setup is prepared. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. Comparison between different controllers is achieved, using a PI controller which is tuned by two methods, firstly manually and secondly using the PSO technique. The system is tested under variable operating conditions. Implementation of the experimental setup is done. The simulation results show good dynamic response with fast recovery time and good agreement with experimental controller.

An Immune System Modeling for Realization of Cooperative Strategies and Group Behavior in Collective Autonomous Mobile Robots (자율이동로봇군의 협조전략과 군행동의 실현을 위한 면역시스템의 모델링)

  • 이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.127-130
    • /
    • 1998
  • In this paper, we propose a method of cooperative control(T-cell modeling) and selection of group behavior strategy(B-cell modeling) based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-call respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based of clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

Training of Fuzzy-Neural Network for Voice-Controlled Robot Systems by a Particle Swarm Optimization

  • Watanabe, Keigo;Chatterjee, Amitava;Pulasinghe, Koliya;Jin, Sang-Ho;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The present paper shows the possible development of particle swarm optimization (PSO) based fuzzy-neural networks (FNN) which can be employed as an important building block in real life robot systems, controlled by voice-based commands. The PSO is employed to train the FNNs which can accurately output the crisp control signals for the robot systems, based on fuzzy linguistic spoken language commands, issued by an user. The FNN is also trained to capture the user spoken directive in the context of the present performance of the robot system. Hidden Markov Model (HMM) based automatic speech recognizers are developed, as part of the entire system, so that the system can identify important user directives from the running utterances. The system is successfully employed in a real life situation for motion control of a redundant manipulator.

  • PDF