• Title/Summary/Keyword: swamping effect

Search Result 5, Processing Time 0.015 seconds

A Confirmation of Identified Multiple Outliers and Leverage Points in Linear Model (다중 선형 모형에서 식별된 다중 이상점과 다중 지렛점의 재확인 방법에 대한 연구)

  • 유종영;안기수
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.269-279
    • /
    • 2002
  • We considered the problem for confirmation of multiple outliers and leverage points. Identification of multiple outliers and leverage points is difficult because of the masking effect and swamping effect. Rousseeuw and van Zomeren(1990) identified multiple outliers and leverage points by using the Least Median of Squares and Minimum Value of Ellipsoids which are high-breakdown robust estimators. But their methods tend to declare too many observations as extremes. Atkinson(1987) suggested a method for confirming of outliers and Fung(1993) pointed out Atkinson method's limitation and proposed another method by using the add-back model. But we analyzed that Fung's method is affected by adjacent effect. In this thesis, we proposed one procedure for confirmation of outliers and leverage points and compared three example with Fung's method.

Identifying Multiple Leverage Points ad Outliers in Multivariate Linear Models

  • Yoo, Jong-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.667-676
    • /
    • 2000
  • This paper focuses on the problem of detecting multiple leverage points and outliers in multivariate linear models. It is well known that he identification of these points is affected by masking and swamping effects. To identify them, Rousseeuw(1985) used robust estimators of MVE(Minimum Volume Ellipsoids), which have the breakdown point of 50% approximately. And Rousseeuw and van Zomeren(1990) suggested the robust distance based on MVE, however, of which the computation is extremely difficult when the number of observations n is large. In this study, e propose a new algorithm to reduce the computational difficulty of MVE. The proposed method is powerful in identifying multiple leverage points and outlies and also effective in reducing the computational difficulty of MVE.

  • PDF

Some Diagnostic Results in Discriminant Analysis

  • Bae, Whasoo;Hwang, Soonyoung
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.139-151
    • /
    • 2001
  • Although lots of works are done in influence diagnostics, results in the multivariate analysis are quite rare. One of recent works done by Fung(1995) is about the single case influence diagnostics in the linear discriminant analysis. In this paper we extend Fung's results to the multiple cases diagnostics which are necessary in the linear discriminant analysis for two reasons among others; First, the masking effect cannot be detected by single case diagnostics and secondly two populations are concerned in the discriminant analysis, i.e., influential cases can occur in one or both populations.

  • PDF

A Procedure for Indentifying Outliers in Multivariate Data (다변량 자료에서 다수 이상치 인식의 절차)

  • Yum, Joon-Keun;Park, Jong-Goo;Kim, Jong-Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.4
    • /
    • pp.28-41
    • /
    • 1995
  • We consider the problem of identifying multiple outliers in linear model. The available regression diagnostic methods often do not succeed in detecting multiple outliers because of the masking and swamping effect. Recently, among the various robust estimator of reducing the effect of outliers, LMS(Least Meadian Square) estimator has been to be a suitable method proposed to expose outliers and leverage points. However, as you know it, the data analysis method with LMS estimator is to be taken the median of the squared residuals in the sample which is extracted the sample space. Then this model causes the trouble, for the number of the chosen sample is nCp, i.e. as the size of sample space n is increasing, the number is increasing fastly. And the covariance matrix may be the singular matrix, so that matrix is approching collinearity. Thus we propose a procedure ELMS for the resampling in LMS method and study the size of the effective elementary set in this algorithm.

  • PDF

A sequential outlier detecting method using a clustering algorithm (군집 알고리즘을 이용한 순차적 이상치 탐지법)

  • Seo, Han Son;Yoon, Min
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.699-706
    • /
    • 2016
  • Outlier detection methods without performing a test often do not succeed in detecting multiple outliers because they are structurally vulnerable to a masking effect or a swamping effect. This paper considers testing procedures supplemented to a clustering-based method of identifying the group with a minority of the observations as outliers. One of general steps is performing a variety of t-test on individual outlier-candidates. This paper proposes a sequential procedure for searching for outliers by changing cutoff values on a cluster tree and performing a test on a set of outlier-candidates. The proposed method is illustrated and compared to existing methods by an example and Monte Carlo studies.