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Some Diagnostic Results in Discriminant Analysis'
Whasoo Bae! and Soonyoung Hwang?

ABSTRACT

Although lots of works are done in influence diagnostics, results in the
multivariate analysis are qliite rare. One of recent works done by Fung(1995)
is about the single case influence diagnostics in the linear discriminant ana-
ysis. In this paper we extend Fung’s results to the multiple cases diagnostics
which are necessary in the linear discriminant analysis for two reasons among
others ; First, the masking effect cannot be detected by single case diagnos-
tics and secondly two populations are concerned in the discriminant analysis,
i.e., influential cases can occur in one or both populations.

Keywords: Influential observations, Masking effect, Swamping phenomenon
1. INTRODUCTION

Identification of influential observations or influential subsets is mainly fo-
cused on regression analysis in the last decade. Also, most of influence measures
suggested so far are concerned about the influence of observations on the esti-
mates of regression coefficient. Cook’s distance(1977) is one of the most widely
used influence measure in linear regression, and Kim and Storer(1996) studied
reference values for Cook’s distance. Cook(1986) suggested the local influence
and Kim(1996) suggested the replacement measure. Also, Kim and Hwang(2000)
studied the influence diagnostics on the Mallows’ C,. Pregibon(1981) suggested
one-step estimator in the logistic regression diagnostics. In Box-Cox transforma-
tion model, Cook and Wang(1983), Hinkley and Wang(1988), Tasi and Wu(1990),
Kim, Storer and Jeong(1996) studied the influence on the transformation param-
eter. Also, regression diagnostics in nonparametric regression models are studied
by Eubank(1985), Silverman(1985), Thomas(1991), and Kim(1996).
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However, influence measures or method of detecting influential observations
in multivariate analysis, such as the discriminant analysis, are very few. Among
these, Campbell(1978) and Johnson(1987) studied identification of influential ob-
servations in discriminant analysis, and Fung(1992, 1995) suggested two basic
building blocks and an influence measure on the discriminant score. However,
these works are concerned about the influence of single observation from a spe-
cific population. As is well known in regression analysis, simultaneous influence
of two or more observations is necessary because of the masking effect, and this
phenomenon is also important in discriminant analysis.

In this paper we extend two fundamental statistics suggested by Fung (1995)
to detect influential subsets on the Fisher’s linear discriminant score in discrim-
inant analysis. Notations and some results of Fung(1995) are summarized in
Section 2, and the extension of Fung’s results are described in Section 3. In Sec-
tion 4, an example based on real data set is given. Also, concluding remarks are

in Section 5.
2. NOTATIONS AND SINGLE CASE DELETION

To extend single case deletion diagnostic by Fung(1995) to multiple cases
deletion, we introduce notations for discriminant analysis and Fung’s results in
this Section.

Let yy,; and yg;, = 1,2, - -, n; be p-vector random samples from two normal
populations (m; and ) with means p; and p,, respectively and a common
variance (). Also, let n = n; + ny be total observations from both populations.
The Fisher’s linear discriminant rule is to allocate an observation y of an unknown
population to 7y if

a'y > a'(p + py)/2

and to my if otherwise. The discriminant coefficients o can be estimated by

& =S Yy, —¥,), where ¥;, i = 1,2 are sample means and S is pooled covariance
matrix given by

1 ni ns

D 3y V)6 V) + D (ve — Fo)(y2 — Vo)
=1 =1

S =

n—2

Fisher’s linear discriminant rule considers whether or not &'y — &'(y, + v,)/2 >
0, where the quantity &'y — &' (¥, + ¥,)/2 is called the discriminant score. Let
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B = (~&/(¥1 +¥2)/2, &) andx’ = (1,y"), then we have Bx = &'y ~&/(¥, + ¥»)
/2. We are interested in the effect of the deletion of observation ¢ on the linear
discriminant rule. Fung(1995) proposed

E(f'x - Blyx) | (2.1)

being the mean squared difference of the discriminant scores for the full sample
and the sample without observation 7. For simplicity, he considered the deletion
of observation ¢ from population ;. Fung(1995) showed that the measure given
in (2.1) can be estimated prarametrically and nonparametrically. The parametric
version is given by

E2=tB}{+(1-t)B}+V, t= %
where
By = (& — &) (F1 — ¥2)/2 — &) (F1 — V1)) /25
By = —(& — &) (F1 — ¥2)/2 — &0y (F1 — T1)) /2,
and

V=(&- d(i))'S(d — &)
Here, & ;) is the estimate of a based on n — 1 observations after deleting the
observation ¢. On the other hand, the nonparametric version is given by

n—2

F2=1tB?+(1—1t)B; + 1%

which is very close to E2 for a large size n. Fung(1992) proposed two fundamental
statistics, d? and zﬁi, on which many influence measures depend. The proposed
measures, E2 and F2 can be expressed in terms of d? = (y1; — ¥,)'S Yy — 74)
and ¢; = & (y1; —y,). Let D? = (7, — ¥,)'S7 (¥, — ¥,), then it can be easily
shown that d? and i /D are asymptotically X2p and N(0,1) distributed, respec-
tively. Then, the statistics DIF = d? — (¢;/D)? and t;/D are asymptotically
independent and distributed as sz_l and N(0,1). The proposed measures are
useful for detecting singly influential observation.

3. MULTIPLE CASES DELETION

The proposed measures in Section 2 are based on the deletion of single ob-
servation. Identification of multiple cases is necessary because of the masking
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effect. In this section we extend Fung’s(1995) results to multiple cases deletion
from both the populations 71 and 7a.

Let K = {i1,---,4} and L = {41, -, i} be index set of size k and [, respec-
tively. We delete k observations in K from m; and [ observations in L from 7o.

For notational convenience, let
wij = (yi —¥:), 1=12

Then, the resulting estimator of the linear discriminant score o after deleting
(k + 1) observations is given by

&(ruL) = S(}%UL) Fix) — Yony)

where
— _ WK — _ Wi,
Y1(K)IY1—n1_k, Y2(L)=}’2—n2_l»
WK=ZW1]', WL:ZWZJ'
JEK JeEL

and the pooled covariance matrix based on (n — k —[) observations can be shown
( see Appendix for proof ) as

1
Skury = gl —2)S - — kWKWKI
1
— — ZWLWLI - Z lewlj’ - Z WQjWQjI]. (31)
n2 jeK jeL

Similar to Eq.(2.1), the mean squared difference of the discriminant scores for
the full sample and the sample without (k + ) observations is given by

~1 ~t 2
E(Bx— ﬁ(KuL)x) .

Then, the parametric version becomes

n

E2(kury = tBigury + (1 = )Byxury + Vikory ,  t= -

where

Bykury = (&—&kur) (F1~¥2)/2 — &ronyF1 — Figx))/2
~&xur) (T2 — Yor)) /2
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Bykury = —(&—ékun) (¥ —¥2)/2— Glreur)(F1 — Fix))/2
—&(xur) (T2 — Vo)) /2,
and
Vikury = (& — &(xur))'S(é& — égur)-
Similarly, the nonparametric version becomes
n—2

F2xur) = tB%(KUL) +(1- t)B22(KUL) +

Set of observations with index {K U L} can be regarded as influential if F 2(xur)
is relatively large. We shall mainly discuss F’ 2(kury because F2gpy is very
close to E2gypy. Also, the two fundamental influence statistics d? and ¥; can
be extended to d% ; = Yiexur 42 and VoL = 2 e KUL ;.

For the multiple cases deletion, asymptotic distributions for the fundamen-
tal statistics such as d%,; , (Yxur/D)? , DIFkyr, and the influence measure
F2(kur) are hard to derive. As an alternative approach, we might use Monte
Carlo simulation study for the reference values for d2 KUL » (’(;Ku /D)%, DIFy ;1
and F2(g1). Of course, the simulation results will depend on the sample size, the
number of variables, and the number of cases deleted. There are several methods
of simulation study in computing the reference values. Among them, Atkin-
son(1981) suggested a Monte Carlo testing method and Kim and Storer(1996)
suggested a Monte Carlo distribution for the maximum values under the assump-
tion that no influential observation exists. The method suggested by Atkin-
son(1981) is useful when one is concerned about the reference value for the single

Vikur)-

case deletion, but, it is almost computationally infeasible for the multiple cases
deletion. Here we take the method by Kim and Storer(1996) since it is especially
convenient to get a reference value for multiple cases deletion. We will explain
this method and apply to the real data in Section 4. ‘

4. EXAMPLE

As an illustrative example, we use an annual financial data(Johnson and Wich-
ern, 1987, p. 526) collected for firms approximately 2 years prior to bankruptcy
and for financially sound firms at about the same point in time. Variables consid-
ered are X1 = (cash flow)/(total debt), X, = (net income)/(total assets), X3 =
(current assets)/(current liabilities), X4 = (current assets)/(net sales). Observa-
tions from bankrupt firms are labeled from 1 to 21 and those from nonbankrupt
firms are labeled from 22 to 46. Therefore, p= 4, ny = 21, and ny = 25.
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Figure 4.1. The plots for the pairs of variables (X1, X2), (X1, X3), (X1, Xy4),
(Xa, X3), (X9, X4) and (X3, X4). In each plot, a straight line denotes a
Fisher’s linear discriminant rule. ( o : population 1, x : population 2 )

The plots for the pairs of variables (X1, Xa2), (X1, X3), (X1, X4), (X2, X3),
(X3, X4), and (X3, X4) are in Figure 4.1. As shown in Figure 4.1, cases 15, 16,
20, 33, 34, 40, 41 seem to be influential.

However, to assess the exact influence of each observation, we have to eval-
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uate basic building blocks d%(u L (?,Z)KU 1/D)?, DIFg_; and influence measure
F2(kur)- The five largest observations with d% 1, (@KU[J/D)Q, and DIFx,
for k+1=1,2,3,4 are given in Table 4.1 and those with F2g ) are given in
Table 4.2. As shown in Table 4.1, observatigns with large values of F2(k ) tend
to have large values at least one of d% 1, (Wxur/D)?, DIFk . Therefore, they
behave quite well as basic building blocks. When one case (k + 1 = 1) is deleted
observations 46 and 34 are very influential. If we delete two cases, the most influ-
ential set is (34, 46), and this set is influential due to the swamping phenomenon.
However, if we delete three cases, the most influential set is (31, 36, 44). This set
cannot be detected as influential if single case deletion diagnostic is used. This
set is a good illustration of the masking effect which can only be revealed by the
multiple cases deletion. Conclusively, observations 31, 34, 36, 44, 46 are quite
influential. Note that these observations are quite different from those detected
by “eye” (15, 16, 20, 34, 40) in Figure 4.1.

To get Monte Carlo reference values for the influence measures d%,; ,
(Yxur/D)?, DIFgyr and F2 (1), we take the method of Kim and Storer(1996).
First, generate n; = 21 random vectors (p = 4) from a multivariate normal distri-
bution with mean p; = 0 and covariance matrix £ = S. Also, generate ny = 25
random vectors from N4(0,S). Note that p; and p, can be set to be different,
however, the statistic F2(gyr) is location-invariant, and therefore it is not unre-
alistic to set pq = p, = 0. For the generated random numbers, compute d% ; ,

(&KuL/D)Q , DIFkyL and F2(gyp) for < K :b-l ) cases, and find the maximum

values of d%; , (Yxur/D)? , DIFgL, and F2gyury - Repeat this process 100
times and get a 95-th percentile of 100 maximum values. The 95-th percentiles
of our Monte Carlo study for k£ +1 = 1,2,3 are listed in Tables 4.1 and 4.2. The
result for k+1 = 4 took too much computation and it is omitted. Note that these
reference values are only a guideline to those observations which might be con-
sidered with special attention, and they are not a strict cutoff value to determine
some observations are influential or not.

To compare the result of Atkinson’s(1981) suggestion, we obtain the en-
velop(see Atkinson(1981) for details) for £ +{ = 1, which is shown in Figure
4.2. We see that cases 46 and 34 are significantly influential and this result:
coincides with the above Monte Carlo study.
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Figure 4.2. F2(gy) and its corresponding envelop for k£ +{ = 1. Cases 46 and
34 are significantly influential.

5. CONCLUDING REMARKS

Detection of influential observations are very important not only in regression
analysis but also in multivariate analysis. Fung(1995) suggested single case dele-
tion diagnostic in the discriminant analysis. In this paper we extend Fung’s
results to multiple cases deletion diagnostic which is necessary to detect influen-
tial observations with masking effect. Through a real data set we have shown
that the masking effect really exists, and those observations with the masking
effect can never be detected by the single case deletion diagnostic.

Also, we consider some reference values for d%,; , (Prur/D)? , DIFxyL
and F2g ) which can flag observations requiring special attention. To do this,
Monte Carlo distributions and their 95-th percentiles were derived.
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Table 4.1. The five largest observations with the basic building blocks d% ;,
(@KuL/D)Q, and DIFgp for K+ 1 = 1,2,3,4. Values in parenthesis denote
Monte Carlo reference values.

k+1 set d%{uL set (ﬂ%&)2 set DIFgyr,
46 17.30 46 7.25 40 10.81
1 11.72 34 4.25 46  10.05
1 40 11.45 42 3.91 2 873
2 9.69 1 3.74 18  8.30
11  8.63 16 3.22 1 7.99

(11.56) (3.84) (9.53)
1,46 29.02 42,46  21.81 1,46 28.45
40, 46 28.76 16, 46  20.12 40, 46 25.19
2 2,46 26.99 27,46  16.52 34,46 25.14
11, 46 25.67 15,46 16.36 11, 46  24.77

18, 46 25.25 26,46  16.31 2,46 24.07

(25.53) (16.27) (24.52)
1, 40, 46 40.48 16, 42, 46  41.78 1,40, 46  40.48
1, 2,46 38.72 27,42, 46 36.51 1, 2,46 38.67
3 2,40, 46 38.45 15,42, 46  36.28 2,40, 46 37.62
1,11, 46 37.66 26, 42, 46  36.20 11, 40, 46 37.31
1,18, 46 37.39 16, 27, 46  34.32 34, 40, 46  36.96

(37.56) (34.29) (37.66)
1, 2,40, 46 50.17 16,27, 42,46 6140 1, 2,40, 46 49.12
1,11,40, 46 49.11 15,16, 42,46 61.10 1,18, 40, 46 48.80
4 1,18,40,46 48.85 16,26,42,46 61.00 1, 40,41, 46 47.71
1,34, 40, 46 48.71 16,20, 42, 46 56.34 1, 2,18, 46 47.08
1,40, 41, 46 47.99 16, 24, 42,46 55.81 2, 11,40, 46 46.58
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Table 4.2. The five largest observations with the influence measure F2 gy
and the reference values from the Monte Carlo study for k¥ +1=1,2,3,4

Monte Carlo

k+1 set F2gur
reference value
46  0.37
34  0.27
1 16 0.13 0.21
40  0.12
20  0.09
34, 46 1.25
42, 46 1.18
2 16,46  0.95 0.83
34,41  0.72
15,46  0.68

31, 36,44  2.95
16, 42,46  2.53
3 2, 31,40  2.21 2.36
16, 34,46 2.20
26, 27, 46 1.97
927, 34, 42, 46 6.02
26, 27, 42, 46  5.18
4 16,34, 42,46  5.17
26, 34, 42, 46  5.08
16, 27, 42, 46 4.24
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APPENDIX : Proof of Eq. (3.1)
Let K = {11,---,5e} and L = {ji,~--,5i}, then  wg = ¥;cp(y; — %) =
ZjeK wijand wp = ZjeL(ij ~¥2) = ZjeL Waj-
Now, we have
oo XY~ Yiex Y1y _ Njex(y1y — ¥1) Wk
YI(K) Y1 ny — k ny — k ] — k
and
- = XYy~ Der Yy | Yjer(yo — ¥a) _ WL
YQ yQ(L) _— y2 N9 _l - ns "'l n2 _ l
Using these expressions, we have
1 _ -
S(xurL) [ (15 — Yix)) (¥1j — Yir))
n—k—1-—2"
J¢K ‘
+ > (V25 — Vo) (25 — Fowy)']
J¢L -
e e D I R AL L)
na
— Wy, - wr !
+j§1(yz] ~ot e~ Vot )
‘ — WK — wg |/
J;{(yw Vit o ) -t )
. Wi, o Wy, !
=2 2~ V2t —5)(y2 — Fo + )]
; —1 o — l
JEL
1 ni 2
— — \/ —_— — \/
= ————[> YDy -V + D (v — o) (y2; — Fo)
n—k—1-2 o st ;
(i — k)2 T g 12t
> (v )(y15 — 51) 2m =k WEWE'
- 3 J U T k2
jEK (TLI k)
T 2n2 —1 !
- Z Y2i — Vo) (y25 —¥2) — (n—_—l)ngWL]
JjeL A2
= —l—[(n—2)S - wrwg' — . wrwy'
n—k—1-2 ny —k KK e —1
— Z lewljl - Z ngng’].
JjEK jeL
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