• Title/Summary/Keyword: svmRadial

Search Result 57, Processing Time 0.026 seconds

Using Support Vector Machine to Predict Political Affiliations on Twitter: Machine Learning approach

  • Muhammad Javed;Kiran Hanif;Arslan Ali Raza;Syeda Maryum Batool;Syed Muhammad Ali Haider
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.217-223
    • /
    • 2024
  • The current study aimed to evaluate the effectiveness of using Support Vector Machine (SVM) for political affiliation classification. The system was designed to analyze the political tweets collected from Twitter and classify them as positive, negative, and neutral. The performance analysis of the SVM classifier was based on the calculation of metrics such as accuracy, precision, recall, and f1-score. The results showed that the classifier had high accuracy and f1-score, indicating its effectiveness in classifying the political tweets. The implementation of SVM in this study is based on the principle of Structural Risk Minimization (SRM), which endeavors to identify the maximum margin hyperplane between two classes of data. The results indicate that SVM can be a reliable classification approach for the analysis of political affiliations, possessing the capability to accurately categorize both linear and non-linear information using linear, polynomial or radial basis kernels. This paper provides a comprehensive overview of using SVM for political affiliation analysis and highlights the importance of using accurate classification methods in the field of political analysis.

Subject Independent Classification of Implicit Intention Based on EEG Signals

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.12 no.3
    • /
    • pp.12-16
    • /
    • 2016
  • Brain computer interfaces (BCI) usually have focused on classifying the explicitly-expressed intentions of humans. In contrast, implicit intentions should be considered to develop more intelligent systems. However, classifying implicit intention is more difficult than explicit intentions, and the difficulty severely increases for subject independent classification. In this paper, we address the subject independent classification of implicit intention based on electroencephalography (EEG) signals. Among many machine learning models, we use the support vector machine (SVM) with radial basis kernel functions to classify the EEG signals. The Fisher scores are evaluated after extracting the gamma, beta, alpha and theta band powers of the EEG signals from thirty electrodes. Since a more discriminant feature has a larger Fisher score value, the band powers of the EEG signals are presented to SVM based on the Fisher score. By training the SVM with 1-out of-9 validation, the best classification accuracy is approximately 65% with gamma and theta components.

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

Prediction of Remaining Useful Life of Lithium-ion Battery based on Multi-kernel Support Vector Machine with Particle Swarm Optimization

  • Gao, Dong;Huang, Miaohua
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1288-1297
    • /
    • 2017
  • The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity.

Classification and discrimination of excel radial charts using the statistical shape analysis (통계적 형상분석을 이용한 엑셀 방사형 차트의 분류와 판별)

  • Seungeon Lee;Jun Hong Kim;Yeonseok Choi;Yong-Seok Choi
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.73-86
    • /
    • 2024
  • A radial chart of Excel is very useful graphical method in delivering information for numerical data. However, it is not easy to discriminate or classify many individuals. In this case, after shaping each individual of a radial chart, we need to apply shape analysis. For a radial chart, since landmarks for shaping are formed as many as the number of variables representing the characteristics of the object, we consider a shape that connects them to a line. If the shape becomes complicated due to the large number of variables, it is difficult to easily grasp even if visualized using a radial chart. Principal component analysis (PCA) is performed on variables to create a visually effective shape. The classification table and classification rate are checked by applying the techniques of traditional discriminant analysis, support vector machine (SVM), and artificial neural network (ANN), before and after principal component analysis. In addition, the difference in discrimination between the two coordinates of generalized procrustes analysis (GPA) coordinates and Bookstein coordinates is compared. Bookstein coordinates are obtained by converting the position, rotation, and scale of the shape around the base landmarks, and show higher rate than GPA coordinates for the classification rate.

Prostate Object Extraction in Ultrasound Volume Using Wavelet Transform (초음파 볼륨에서 웨이브렛 변환을 이용한 전립선 객체 추출)

  • Oh Jong-Hwan;Kim Sang-Hyun;Kim Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.67-77
    • /
    • 2006
  • This thesis proposes an effi챠ent method for extracting a prostate volume from 3D ultrasound image by using wavelet transform and SVM classification. In the proposed method, a modulus image for each 2D slice is generated by averaging detail images of horizontal and vertical orientations at several scales, which has the sharpest local maxima and the lowest noise power compared to those of all single scales. Prostate contour vertices are determined accurately using a SVM classifier, where feature vectors are composed of intensity and texture moments investigated along radial lines. Experimental results show that the proposed method yields absolute mean distance of on average 1.89 pixels when the contours obtained manually by an expert are used as reference data.

The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis

  • Kavitha, Muthu Subash;Asano, Akira;Taguchi, Akira;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.43 no.3
    • /
    • pp.153-161
    • /
    • 2013
  • Purpose: To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. Materials and Methods: We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. Results: The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Conclusion: Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.

Classification Algorithms for Human and Dog Movement Based on Micro-Doppler Signals

  • Lee, Jeehyun;Kwon, Jihoon;Bae, Jin-Ho;Lee, Chong Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • We propose classification algorithms for human and dog movement. The proposed algorithms use micro-Doppler signals obtained from humans and dogs moving in four different directions. A two-stage classifier based on a support vector machine (SVM) is proposed, which uses a radial-based function (RBF) kernel and $16^{th}$-order linear predictive code (LPC) coefficients as feature vectors. With the proposed algorithms, we obtain the best classification results when a first-level SVM classifies the type of movement, and then, a second-level SVM classifies the moving object. We obtain the correct classification probability 95.54% of the time, on average. Next, to deal with the difficult classification problem of human and dog running, we propose a two-layer convolutional neural network (CNN). The proposed CNN is composed of six ($6{\times}6$) convolution filters at the first and second layers, with ($5{\times}5$) max pooling for the first layer and ($2{\times}2$) max pooling for the second layer. The proposed CNN-based classifier adopts an auto regressive spectrogram as the feature image obtained from the $16^{th}$-order LPC vectors for a specific time duration. The proposed CNN exhibits 100% classification accuracy and outperforms the SVM-based classifier. These results show that the proposed classifiers can be used for human and dog classification systems and also for classification problems using data obtained from an ultra-wideband (UWB) sensor.

Half-Against-Half Multi-class SVM Classify Physiological Response-based Emotion Recognition

  • Vanny, Makara;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.262-267
    • /
    • 2013
  • The recognition of human emotional state is one of the most important components for efficient human-human and human- computer interaction. In this paper, four emotions such as fear, disgust, joy, and neutral was a main problem of classifying emotion recognition and an approach of visual-stimuli for eliciting emotion based on physiological signals of skin conductance (SC), skin temperature (SKT), and blood volume pulse (BVP) was used to design the experiment. In order to reach the goal of solving this problem, half-against-half (HAH) multi-class support vector machine (SVM) with Gaussian radial basis function (RBF) kernel was proposed showing the effective techniques to improve the accuracy rate of emotion classification. The experimental results proved that the proposed was an efficient method for solving the emotion recognition problems with the accuracy rate of 90% of neutral, 86.67% of joy, 85% of disgust, and 80% of fear.

A study of a cardiac disorder distinction based on SVM by using a heart sound (심음을 이용한 SVM 기반의 심장 질환 판별에 관한 연구)

  • Kim, Bo-Ri;Beack, Seung-Hwa;Kim, Dong-Wan;Paek, Seung-Eun;Kwon, Sun-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2173-2174
    • /
    • 2006
  • 심음은 심장이 수축, 확장 시에 심장의 움직임과 혈류의 흐름에 의해 발생하는 음향이다. 심음은 여러 신호원으로 이루어져 있고, 매우 복잡하고 비고정적인 신호이다. 심장의 질환에 따라 심음의 소리는 다르게 나타난다. 심음을 구분하여 심장 질환의 유무를 판단하는 가장 기초적인 기준이 될 수 있다. 본 연구에서는 Support Vector Machine 기법을 이용하여 심음을 통한 심장 질환 판별 검출 알고리즘을 제안하였다. Support Vector Machine은 신경망의 한 종류이며 이진분류에서 좋은 성능을 보인다. 또한 Polynomial Radial Basis Function, Multi-Layer Perceptron Classifiers를 위한 대안적인 학습방법으로 사용된다. 이러한 특성을 사용하여 심음의 데이터들을 일정한 기준에 의하여 (+)데이터와 (-)데이터로 분리한 후, 각 데이터들을 학습시켜 최적의 데이터를 만든다. 이후 각 데이터들은 점층적인 추가 학습을 시킴으로써 적은 양의 학습 데이터만으로도 높은 분류 성능을 표현할 수 있다. 이 연구에서 제안된 SVM을 실제 심음 데이터에 적용한 실험에서 심장 질환의 유무 판별에 우수한 성능을 보임을 확인할 수 있을 것으로 판단된다.

  • PDF