• Title/Summary/Keyword: sustainable waste glass

Search Result 14, Processing Time 0.026 seconds

The Performance and Evaluation for Recycling of Waste Glass

  • Chang, Tein-Chin;Huang, Jian-Er;Yen, Jia-Huei
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.80-83
    • /
    • 2001
  • According to the EPA in Taiwan report, 9.05 million metric tons of solid wastes were generated in 1999, and the waste glass was accounted of 4.95 percent. However, with the increasing tonnage of disposal cost and existing disposal sites are reaching full capacity, recycling is currently accepted as a sustainable approach to waste management. Therefore, it's essential and urgent that the government in Taiwan establish the recycling and recovery framework for the minimization of the solid waste, reduction of materials and energy consumption, and the encouragement for the reuse, recycle and recovery development. To achieve this Boal, Taiwan has been strived for a long period of time in waste glass recovery and recycle. Waste glass, unlike other kinds of resource waste, is 100% recyclable. The EPA in Taiwan now center on a lot of different kinds of waste glass, such as glass container, flat glass, CRT glass, windshields glass, fluorescent lamps, and waste pesticide glass container. This article will focus on the framework of the recycling market access, and also try to provide some strategies to improve waste glass recycling efficiently.

  • PDF

Axial strength of FRP-reinforced geopolymeric concrete members: A step towards sustainable construction

  • Mohamed Hechmi El Ouni;Ali Raza;Bisma Khalid;Afzal Ahmed;Muhammad Sohail Jameel;Yasser Alashker
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.687-704
    • /
    • 2023
  • This study aims to examine the structural response of glass fibre-reinforced polymer (Glass-FRP) reinforced geopolymer electronic waste aggregate concrete (GEWC) compression elements under axial compression for sustainable development. The research includes the fabrication of nine GEWC circular compression elements with different reinforcement ratios and a 3-D nonlinear finite element model using ABAQUS. The study involves a detailed parametric analysis to examine the impact of various parameters on the behavior of GEWC compression elements. The results indicate that reducing the vertical distance of glass-FRP ties improves the ductility of GEWC compression elements, and those with eight longitudinal rebars have higher axial load-carrying capacities. The finite element predictions were in good agreement with the testing results, and the put forwarded empirical model shows higher accuracy than previous models by involving the confinement effect of lateral glass-FRP ties on the axial strength of GEWC compression elements. This research work contributes to minimizing the carbon footprint of cement manufacturing and electronic waste materials for sustainable development.

A neural-based predictive model of the compressive strength of waste LCD glass concrete

  • Kao, Chih-Han;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.457-465
    • /
    • 2017
  • The Taiwanese liquid crystal display (LCD) industry has traditionally produced a huge amount of waste glass that is placed in landfills. Waste glass recycling can reduce the material costs of concrete and promote sustainable environmental protection activities. Concrete is always utilized as structural material; thus, the concrete compressive strength with a variety of mixtures must be studied using predictive models to achieve more precise results. To create an efficient waste LCD glass concrete (WLGC) design proportion, the related studies utilized a multivariable regression analysis to develop a compressive strength waste LCD glass concrete equation. The mix design proportion for waste LCD glass and the compressive strength relationship is complex and nonlinear. This results in a prediction weakness for the multivariable regression model during the initial growing phase of the compressive strength of waste LCD glass concrete. Thus, the R ratio for the predictive multivariable regression model is 0.96. Neural networks (NN) have a superior ability to handle nonlinear relationships between multiple variables by incorporating supervised learning. This study developed a multivariable prediction model for the determination of waste LCD glass concrete compressive strength by analyzing a series of laboratory test results and utilizing a neural network algorithm that was obtained in a related prior study. The current study also trained the prediction model for the compressive strength of waste LCD glass by calculating the effects of several types of factor combinations, such as the different number of input variables and the relevant filter for input variables. These types of factor combinations have been adjusted to enhance the predictive ability based on the training mechanism of the NN and the characteristics of waste LCD glass concrete. The selection priority of the input variable strategy is that evaluating relevance is better than adding dimensions for the NN prediction of the compressive strength of WLGC. The prediction ability of the model is examined using test results from the same data pool. The R ratio was determined to be approximately 0.996. Using the appropriate input variables from neural networks, the model validation results indicated that the model prediction attains greater accuracy than the multivariable regression model during the initial growing phase of compressive strength. Therefore, the neural-based predictive model for compressive strength promotes the application of waste LCD glass concrete.

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

A fundamental study on the sulphate-resistant mortar using waste glass fine powder and meta-kaolin according to various fine aggregates (잔골재 종류에 따른 폐유리 미분말 및 메타카올린을 사용한 내황산염 모르타르에 관한 기초적 연구)

  • Jeong, Dongwhan;Park, Junhui;Ahn, Taeho;Park, Yeongsik;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The degradation of the concrete due to deterioration factors, such as corrosion of steel bars, cracks and structural strength of reinforced concrete structures, is a social problem. Especially, concrete structures constructed in seawater, underground water, waste water treatment facilities and sewerage are subject to chemical attack by acid and sulphate. Therefore, this study was conducted to compare sulfated glass and fine aggregate of slag using waste glass fine powder and meta kaolin. The results showed that the slag fine aggregate showed better sulfate resistance than the river sand, and the fine powder of waste glass showed the best performance at 3 % displacement.

Finite element analysis and theoretical modeling of GFRP-reinforced concrete compressive components having waste tire rubber aggregates

  • Mohamed Hechmi El Ouni;Ali Raza
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.57-76
    • /
    • 2024
  • The management of waste tire rubber has become a pressing environmental and health issue, requiring sustainable solutions to mitigate fire hazards and conserve natural resources. The performance of waste materials in structural components needs to be investigated to fabricate sustainable structures. This study aims to investigate the behavior of glass fiber reinforced polymer (GFRP) reinforced rubberized concrete (GRRC) compressive components under compressive loads. Nine GRRC circular compressive components, varying in longitudinal and transverse reinforcement ratios, were constructed. A 3D nonlinear finite element model (FEM) was proposed by means of the ABAQUS software to simulate the behavior of the GRRC compressive components. A comprehensive parametric analysis was conducted to assess the impact of different parameters on the performance of GRRC compressive components. The experimental findings demonstrated that reducing the spacing of GFRP stirrups enhanced the ductility of GRRC compressive components, while the addition of rubberized concrete further improved their ductility. Failure in GRRC compressive components occurred in a compressive columnar manner, characterized by vertical cracks and increased deformability. The finite element simulations closely matched the experimental results. The proposed empirical model, based on 600 test samples and considering the lateral confinement effect of FRP stirrups, demonstrated higher accuracy (R2 = 0.835, MSE = 171.296, MAE = 203.549, RMSE = 195.438) than previous models.

Feasibility Study on the Synthesis of Wollastonite Using Waste Glass and Sand (폐유리와 모래를 활용한 Wollastonite 합성 예비 실험)

  • Pae, Junil;Kwon, Minkyoung;Moon, Juhyuk
    • Cement Symposium
    • /
    • s.49
    • /
    • pp.23-24
    • /
    • 2022
  • Wollastonite is a promising sustainable cement mineral which directly reacts with carbon dioxide to form calcium carbonate and silica gel. Due to the carbon dioxide reaction, it can be undoubtly one of materials for carbon capture, utilization, and storage. In this study, feasibility study for synthesizing the wolloastonite crystal using sand and waste glass was performed instead of using reactive but expensive silica fume for silica source.

  • PDF

Characterization of household solid waste and current status of municipal waste management in Rishikesh, Uttarakhand

  • Rawat, Suman;Daverey, Achlesh
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.323-329
    • /
    • 2018
  • The municipal solid waste (MSW) management system in one of the Class II Indian cities i.e. Rishikesh was studied and analysed to identify the key issues in solid waste management in the city. A total of 329 solid waste samples from 47 households were collected to characterize the household solid waste (HSW). The average (HSW) generation rate was 0.26 kg/c/d and it was composed of organic waste (57.3%), plastics (14%), paper (10.9%), and glass and ceramic (1.3%) and other materials (16.5%). There was an inverse relationship between household waste generation rate and family size (p < 0.05). The MSW management system practiced in Rishikesh is unsound. There is no waste segregation at source, no provisions of composting and no recycling by formal sector. The collection and transportation of waste is inadequate and inappropriate. Collected waste is dumped in open dumping site without scientific management. Following are some recommendations for developing a sustainable solid waste management system in Rishikesh city: (1) sensitize people for segregation at source; (2) promote reduction, reuse and recycling of wastes; (3) promote community based composting; (4) provision for 100% door to door collection and; (5) formalize the informal sectors such as rag pickers and recycling industries.

Assessment of compressive strength of cement mortar with glass powder from the early strength

  • Wang, Chien-Chih;Ho, Chun-Ling;Wang, Her-Yung;Tang, Chi
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • The sustainable development principle of replacing natural resources with renewable material is an important research topic. In this study, waste LCD (liquid crystal display) glass powder was used to replace cement (0%, 10%, 20% and 30%) through a volumetric method using three water-binder ratios (0.47, 0.59, and 0.71) to make cement mortar. The compressive strength was tested at the ages of 7, 28, 56 and 91 days. The test results show that the compressive strength increases with age but decreases as the water-binder ratio increases. The compressive strength slightly decreases with an increase in the replacement of LCD glass powder at a curing age of 7 days. However, at a curing age of 91 days, the compressive strength is slightly greater than that for the control group (glass powder is 0%). When the water-binder ratios are 0.47, 0.59 and 0.71, the compressive strength of the various replacements increases by 1.38-1.61 times, 1.56-1.80 times and 1.45-2.20 times, respectively, during the aging process from day 7 to day 91. Furthermore, a prediction model of the compressive strength of a cement mortar with waste LCD glass powder was deduced in this study. According to the comparison between the prediction analysis values and test results, the MAPE (mean absolute percentage error) values of the compressive strength are between 2.79% and 5.29%, and less than 10%. Thus, the analytical model established in this study has a good forecasting accuracy. Therefore, the proposed model can be used as a reliable tool for assessing the design strength of cement mortar from early age test results.

Environmental Assessment of Chemically Strengthened Glass for Touch Screen Panel by Material Life Cycle Assessment (물질전과정평가를 이용한 터치스크린패널용 화학강화유리에 대한 환경성 평가)

  • Lee, Na-Ri;Lee, Soo-Sun;Kim, Kyeong-Il;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.301-306
    • /
    • 2012
  • Rapidly growing mobile machines such as tablet PC and smart phone are equipped with touch screen panel using a sturdy material for products surface protection. Therefore, surge of chemically strengthened glass was increased and the amount of waste matter is proportional to demand. The purpose of this study is environmental impact assessment on touch screen panel of chemically strengthened glass by material life cycle assessment (MLCA). We used CES of Granta, SimaPro and Gabi software for MLCA. Chemically strengthened glass (2.7, 5.7 and 10.3 inch) was calculated to environmental impact assessment by Granta software under two cases. One case is Landfill and the other case is Reuse. As a result, in case of reuse, energy values of 2.7, 5.7 and 10.3 inches were reduced by an average of 51.4%, $CO_2$ values were reduced by an average of 46.6% than Landfill case, respectively. We assessed impact categories of 11 types using SimaPro software. As a result, the contents of fossil fuels, inorganics and climate change have a huge impact than the other impact categories. And the main cause of environmental impact is antimony and hydrogen fluoride in Gabi results.