• 제목/요약/키워드: sustainable nanomaterial

검색결과 4건 처리시간 0.017초

Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials

  • N. K. Karthikeyan;S. Elavenil
    • Advances in nano research
    • /
    • 제16권1호
    • /
    • pp.53-69
    • /
    • 2024
  • Advancements in the technology of building materials has led to diverse applications of nanomaterials with the aim to monitor concrete structures. While there are myriad instances of the use of nanoparticles in building materials, the production of smart nano cement-composites is often expensive. Thereupon, this research aims to discover a sustainable nanomaterial from tyre waste using the pyrolysis process as part of the green manufacturing circle. Here, Nano Structure Tyre-Char (NSTC) is introduced as a zero-dimension carbon-based nanoparticle. The NSTC particles were characterized using various standard characterization techniques. Several salient results for the NSTC particles were obtained using microscopic and spectroscopic techniques. The size of the particles as well as that of the agglomerates were reduced significantly using the milling process and the results were validated through a scanning electron microscope. The crystallite size and crystallinity were found to be ~35nm and 10.42%, respectively. The direct bandgap value of 5.93eV and good optical conductivity at 786 nm were obtained from the ultra violet visible spectroscopy measurements. The thermal analysis reveals the presence of a substantial amount of carbon, the rate of maximum weight loss, and the two stages of phase transformation. The FT-Raman confirms the presence of carboxyl groups and a ID/IG ratio of 0.83. Water contact angle around 140° on the surface implies the highly hydrophobic nature of the material and its low surface energy. This characteristic process assists to obtain a sustainable nanomaterial from waste tyres, contributing to the development of a smart building material.

An overview of functionalised carbon nanomaterial for organic pollutant removal

  • Jun, Lau Yien;Mubarak, N.M.;Yee, Min Juey;Yon, Lau Sie;Bing, Chua Han;Khalid, Mohammad;Abdullah, E.C.
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.175-186
    • /
    • 2018
  • Carbon nanomaterials (CNMs), particularly carbon nanotube and graphene-based materials, are rapidly emerging as one of the most effective adsorbents for wastewater treatment. CNMs hold great potential as new generation adsorbents due to their high surface to volume ratio, as well as extraordinary chemical, mechanical and thermal stabilities. However, implementation of pristine CNMs in real world applications are still hindered due to their poor solubility in most solvents. Hence, surface modification of CNMs is essential for wastewater treatment application in order to improve its solubility, chemical stability, fouling resistance and efficiency. Numerous studies have reported the applications of functionalized CNMs as very promising adsorbents for treating organic and inorganic wastewater pollutants. In this paper, the removal of organic dye and phenol contaminants from wastewater using various type of functionalized CNMs are highlighted and summarized. Challenges and future opportunities for application of these CNMs as adsorbents in sustainable wastewater treatment are also addressed in this paper.

Novel approach to improve nano green mortar behaviour using nano-paper waste with nano-metakaolin

  • Radwa Defalla Abdel, Hafez;Bassam A., Tayeh;Raghda Osama Abd-Al, Ftah;Khaled, Abdelsamie
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.341-354
    • /
    • 2022
  • Treatment of solid waste building materials is a crucial method of disposal and an area of ongoing research. New standards for the treatment of solid waste building materials are necessary due to multisource features, huge quantities, and complicated compositions of solid waste. In this research, sustainable nanomaterial mixtures containing nano-paper waste (NPW) and nano-metakaolin (NMK) were used as a substitute for Portland cement. Portland cement was replaced with different ratios of NPW and NMK (0%, 4%, 8%, and 12% by weight of cement) while the cement-to-water ratio remained constant at 0.4 in all mortar mixtures. The fresh properties had a positive effect on them, and with the increase in the percentage of replacement, the fresh properties decreased. The results of compressive strength at 7 and 28 days and flexural strength at 28 days show that the nanomaterials improved the strength, but the results of NMK were better than those of NPW. The best replacement rate was 8%, followed by 4%, and finally 12% for both materials. The combination of NMK and NPW as a replacement (12% NMK + 12% NPW) showed less shrinkage than the others because of the high pozzolanic reactivity of the nanomaterials. The combination of NMK and NPW improved the microstructure by increasing the hydration volume and lowering the water in the cement matrix, as clearly observed in the C-S-H decomposition.

나노물질을 이용한 다세대전이 및 독성 연구 추세 (Trend of Multigenerational Transfer and Toxicity Studies Using Nanomaterials)

  • 문종민;안윤주
    • 대한환경공학회지
    • /
    • 제38권7호
    • /
    • pp.395-401
    • /
    • 2016
  • 최근 나노물질의 산업 및 생활분야의 광범위한 사용으로 인한 나노안전성이 대두되고 있다. 특히 다양한 목적에 의해 가공된 나노물질의 잠재적 독성이 문제가 되고 있기 때문에, 지속가능한 나노물질 산업의 발전을 위해서는 적극적인 나노 안전성에 대한 연구가 진행되어야 한다. 현재까지 나노물질의 일반적 급성, 만성독성에 대한 연구는 비교적 활발하게 진행되고 있지만, 나노물질의 다세대 영향에 대한 연구는 시간적 및 실험적 제약으로 인해 미흡한 실정이다. 생태계 내 나노물질의 다세대 연구는 일반적 독성 종말점을 이용한 후세대 영향 연구와 나노물질의 세대 간 거동을 확인한 세대전이 연구로 나뉘어 진행되고 있다. 본 연구는 나노물질의 다세대 영향 및 전이연구 추세를 확인하고 제한점을 제시하여 앞으로의 연구방향을 제시하는데 그 목적이 있다. 나노물질에 대한 학술연구를 대상으로 문헌조사를 실시하였으며, 각 분야별 자료를 수집하고 비교분석하였다. 조사결과 후세대 영향을 확인한 연구는 총 13건 이었으며, 생존률, 생식률 그리고 운동성과 같은 지표를 이용하여 다음세대에 전달되는 영향을 확인하였다. 그리고, 7건의 세대전이 연구에서는 후세대로 전달된 나노물질을 다양한 이미징 기법을 통하여 확인하였다. 현재까지 나노물질이 후세대에 미치는 독성영향의 메커니즘은 밝혀진 바가 거의 없다. 본 연구에서는 나노물질의 다세대 연구추세를 분석하고, 후세대영향과 세대전이의 상호보완적 연구방향을 제시하였다.