DOI QR코드

DOI QR Code

나노물질을 이용한 다세대전이 및 독성 연구 추세

Trend of Multigenerational Transfer and Toxicity Studies Using Nanomaterials

  • 문종민 (건국대학교 보건환경과학과) ;
  • 안윤주 (건국대학교 보건환경과학과)
  • Moon, Jongmin (Department of Environmental Health Science, Konkuk University) ;
  • An, Youn-Joo (Department of Environmental Health Science, Konkuk University)
  • 투고 : 2016.03.10
  • 심사 : 2016.05.13
  • 발행 : 2016.07.31

초록

최근 나노물질의 산업 및 생활분야의 광범위한 사용으로 인한 나노안전성이 대두되고 있다. 특히 다양한 목적에 의해 가공된 나노물질의 잠재적 독성이 문제가 되고 있기 때문에, 지속가능한 나노물질 산업의 발전을 위해서는 적극적인 나노 안전성에 대한 연구가 진행되어야 한다. 현재까지 나노물질의 일반적 급성, 만성독성에 대한 연구는 비교적 활발하게 진행되고 있지만, 나노물질의 다세대 영향에 대한 연구는 시간적 및 실험적 제약으로 인해 미흡한 실정이다. 생태계 내 나노물질의 다세대 연구는 일반적 독성 종말점을 이용한 후세대 영향 연구와 나노물질의 세대 간 거동을 확인한 세대전이 연구로 나뉘어 진행되고 있다. 본 연구는 나노물질의 다세대 영향 및 전이연구 추세를 확인하고 제한점을 제시하여 앞으로의 연구방향을 제시하는데 그 목적이 있다. 나노물질에 대한 학술연구를 대상으로 문헌조사를 실시하였으며, 각 분야별 자료를 수집하고 비교분석하였다. 조사결과 후세대 영향을 확인한 연구는 총 13건 이었으며, 생존률, 생식률 그리고 운동성과 같은 지표를 이용하여 다음세대에 전달되는 영향을 확인하였다. 그리고, 7건의 세대전이 연구에서는 후세대로 전달된 나노물질을 다양한 이미징 기법을 통하여 확인하였다. 현재까지 나노물질이 후세대에 미치는 독성영향의 메커니즘은 밝혀진 바가 거의 없다. 본 연구에서는 나노물질의 다세대 연구추세를 분석하고, 후세대영향과 세대전이의 상호보완적 연구방향을 제시하였다.

Nano-saftey has become an emerging issue recently, because of the broad use of nanomaterials in nano-industries and commercial areas. For a sustainable development in the nano-industry, active studies on nano-safety should be executed, especially on the potential risks in engineered nanomaterials (ENMs). Although acute and chronic assessments of nanomaterials have been extensively studied in many studies, multigenerational studies are very scarce. Overall, multigenerational studies have progressed as two different trends, studying post-generational effects or trans-generation effects. This study intended to suggest further nano-safety studies based on the trends and limitations of current ones. Through a comparative analysis, we investigated peer-reviewed multigenerational studies that used nanomaterials. Thirteen studies on post-generation effects confirmed generational nano-toxicity via several bioassays, such as mortality, fertility, and behavioral assays. Seven studies on trans-generation effects demonstrated nanomaterial pathways to next generations, using imaging techniques. Until now, mechanisms for post-generational nano-toxicity has been rarely proposed. Thus, we propose that complementary studies on such mechanisms are imperative for future studies.

키워드

참고문헌

  1. Nel, A., Xia, T., Madler, L. and Li, N., "Toxic potential of materials at the nanolevel," Science, 311(5761), 622-627(2006). https://doi.org/10.1126/science.1114397
  2. Kempa, T. J., Day, R. W., Kim, S.-K., Park, H.-G. and Lieber, C. M., "Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells," Energy. Environ. Sci., 6(3), 719-733(2013). https://doi.org/10.1039/c3ee24182c
  3. Nohynek, G. J. and Dufour, E. K., "Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: a risk to human health?," Arch. Toxicol., 86(7), 1063-1075(2012). https://doi.org/10.1007/s00204-012-0831-5
  4. Siow, K. S., "Mechanical properties of nano-silver joints as die attach materials," J. Alloys. Compd., 514, 6-19(2012). https://doi.org/10.1016/j.jallcom.2011.10.092
  5. Kesharwani, P., Jain, K. and Jain, N. K., "Dendrimer as nanocarrier for drug delivery," Prog. Polym. Sci., 39(2), 268-307(2014). https://doi.org/10.1016/j.progpolymsci.2013.07.005
  6. Mauter, M. S. and Elimelech, M., "Environmental applications of carbon-based nanomaterials," Environ. Sci. Technol., 42(16), 5843-5859(2008). https://doi.org/10.1021/es8006904
  7. O'connell, M. J., "Carbon nanotubes: properties and applications," CRC press(2006).
  8. Mochalin, V. N., Shenderova, O., Ho, D. and Gogotsi, Y., "The properties and applications of nanodiamonds," Nat. Nanotechnol., 7(1), 11-23(2012). https://doi.org/10.1038/nnano.2011.209
  9. Nowack, B., Krug, H. F. and Height, M., "120 years of nanosilver history: implications for policy makers," Environ. Sci. Technol., 45(4), 1177-1183(2011). https://doi.org/10.1021/es103316q
  10. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K. and von Goetz, N., "Titanium dioxide nanoparticles in food and personal care products," Environ. Sci. Technol., 46(4), 2242-2250(2012). https://doi.org/10.1021/es204168d
  11. Zhu, X., Radovic-Moreno, A. F., Wu, J., Langer, R. and Shi, J., "Nanomedicine in the management of microbial infection-Overview and perspectives," Nano Today, 9(4), 478-498(2014). https://doi.org/10.1016/j.nantod.2014.06.003
  12. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S. and Weiss, S., "Quantum dots for live cells, in vivo imaging, and diagnostics," Science, 307(5709), 538-544(2005). https://doi.org/10.1126/science.1104274
  13. Kim, T.-H., Cho, K.-S., Lee, E. K., Lee, S. J., Chae, J., Kim, J. W., Kim, D. H., Kwon, J.-Y., Amaratunga, G. and Lee, S. Y., "Full-colour quantum dot displays fabricated by transfer printing," Nat. Photonics, 5(3), 176-182(2011). https://doi.org/10.1038/nphoton.2011.12
  14. Batley, G. E., Kirby, J. K. and McLaughlin, M. J., "Fate and risks of nanomaterials in aquatic and terrestrial environments," Acc. Chem. Res., 46(3), 854-862(2012). https://doi.org/10.1021/ar2003368
  15. Bergamaschi, E., Poland, C., Canu, I. G. and Prina-Mello, A., "The role of biological monitoring in nano-safety," Nano Today, 10(3), 274-277(2015). https://doi.org/10.1016/j.nantod.2015.02.001
  16. Arndt, D. A., Chen, J., Moua, M. and Klaper, R. D., "Multigeneration impacts on Daphnia magna of carbon nanomaterials with differing core structures and functionalizations," Environ. Toxicol. Chem., 33(3), 541-547(2014). https://doi.org/10.1002/etc.2439
  17. Jacobasch, C., Volker, C., Giebner, S., Volker, J., Alsenz, H., Potouridis, T., Heidenreich, H., Kayser, G., Oehlmann, J. and Oetken, M., "Long-term effects of nanoscaled titanium dioxide on the cladoceran Daphnia magna over six generations," Environ. Pollut., 186, 180-186(2014). https://doi.org/10.1016/j.envpol.2013.12.008
  18. Volker, C., Boedicker, C., Daubenthaler, J., Oetken, M. and Oehlmann, J., "Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multigeneration experiments," PloS One, 8(10), e75026(2013). https://doi.org/10.1371/journal.pone.0075026
  19. Bundschuh, M., Seitz, F., Rosenfeldt, R. R. and Schulz, R., "Titanium dioxide nanoparticles increase sensitivity in the next generation of the water flea Daphnia magna," PloS One, 7(11), e48956(2012). https://doi.org/10.1371/journal.pone.0048956
  20. Contreras, E. Q., Puppala, H. L., Escalera, G., Zhong, W. and Colvin, V. L., "Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans," Environ. Toxicol. Chem., 33(12), 2716-2723(2014). https://doi.org/10.1002/etc.2705
  21. Kim, S. W., Kwak, J. I. and An, Y.-J., "Multigenerational Study of Gold Nanoparticles in Caenorhabditis elegans: Transgenerational Effect of Maternal Exposure," Environ. Sci. Technol., 47(10), 5393-5399(2013). https://doi.org/10.1021/es304511z
  22. Contreras, E. Q., Cho, M., Zhu, H., Puppala, H. L., Escalera, G., Zhong, W. and Colvin, V. L., "Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure," Environ. Sci. Technol., 47(2), 1148-1154(2013). https://doi.org/10.1021/es3036785
  23. Wang, Q., Ebbs, S. D., Chen, Y. and Ma, X., "Trans-generational impact of cerium oxide nanoparticles on tomato plants," Metallomics, 5(6), 753-759(2013). https://doi.org/10.1039/c3mt00033h
  24. Geisler-Lee, J., Brooks, M., Gerfen, J. R., Wang, Q., Fotis, C., Sparer, A., Ma, X., Berg, R. H. and Geisler, M., "Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana," Nanomater., 4(2), 301-318(2014). https://doi.org/10.3390/nano4020301
  25. Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R. and Dhawan, A., "A flow cytometric method to assess nanoparticle uptake in bacteria," Cytometry A, 79(9), 707-712(2011).
  26. Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R. and Dhawan, A., "Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells," Chemosphere, 83(8), 1124-1132(2011). https://doi.org/10.1016/j.chemosphere.2011.01.025
  27. Blickley, T. M., Matson, C. W., Vreeland, W. N., Rittschof, D., Di Giulio, R. T. and McClellan-Green, P. D., "Dietary CdSe/ZnS quantum dot exposure in estuarine fish: Bioavailability, oxidative stress responses, reproduction, and maternal transfer," Aquat. Toxicol., 148, 27-39(2014). https://doi.org/10.1016/j.aquatox.2013.12.021
  28. Skoog, K., "Cell division in Escherichia coli," Department of Biochemistry and Biophysics, Stockholm University, 61(2011).
  29. Panacek, A., Prucek, R., Safarova, D., Dittrich, M., Richtrova, J., Benickova, K., Zboril, R. and Kvitek, L., "Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster," Environ. Sci. Technol., 45(11), 4974-4979(2011). https://doi.org/10.1021/es104216b
  30. Lin, S., Reppert, J., Hu, Q., Hudson, J. S., Reid, M. L., Ratnikova, T. A., Rao, A. M., Luo, H. and Ke, P. C., "Uptake, translocation, and transmission of carbon nanomaterials in rice plants," Small, 5(10), 1128-1132(2009). https://doi.org/10.1002/smll.200801556
  31. Mohan, N., Chen, C.-S., Hsieh, H.-H., Wu, Y.-C. and Chang, H.-C., "In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans," Nano lett., 10(9), 3692-3699(2010). https://doi.org/10.1021/nl1021909
  32. Kuo, Y., Hsu, T.-Y., Wu, Y.-C. and Chang, H.-C., "Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo," Biomaterials, 34(33), 8352-8360(2013). https://doi.org/10.1016/j.biomaterials.2013.07.043
  33. Meyer, J. N., Lord, C. A., Yang, X. Y., Turner, E. A., Badireddy, A. R., Marinakos, S. M., Chilkoti, A., Wiesner, M. R. and Auffan, M., "Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans," Aquat. Toxicol., 100(2), 140-150(2010). https://doi.org/10.1016/j.aquatox.2010.07.016
  34. Qu, Y., Li, W., Zhou, Y., Liu, X., Zhang, L., Wang, L., Li, Y.-F., Iida, A., Tang, Z. and Zhao, Y., "Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism," Nano lett., 11(8), 3174-3183(2011). https://doi.org/10.1021/nl201391e
  35. Zanni, E., De Bellis, G., Bracciale, M. P., Broggi, A., Santarelli, M. L., Sarto, M. S., Palleschi, C. and Uccelletti, D., "Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model," Nano Lett., 12(6), 2740-2744(2012). https://doi.org/10.1021/nl204388p
  36. Scharf, A., Piechulek, A., von Mikecz, A., "Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans," ACS nano, 7(12), 10695-10703(2013). https://doi.org/10.1021/nn403443r