Browse > Article
http://dx.doi.org/10.4491/KSEE.2016.38.7.395

Trend of Multigenerational Transfer and Toxicity Studies Using Nanomaterials  

Moon, Jongmin (Department of Environmental Health Science, Konkuk University)
An, Youn-Joo (Department of Environmental Health Science, Konkuk University)
Publication Information
Abstract
Nano-saftey has become an emerging issue recently, because of the broad use of nanomaterials in nano-industries and commercial areas. For a sustainable development in the nano-industry, active studies on nano-safety should be executed, especially on the potential risks in engineered nanomaterials (ENMs). Although acute and chronic assessments of nanomaterials have been extensively studied in many studies, multigenerational studies are very scarce. Overall, multigenerational studies have progressed as two different trends, studying post-generational effects or trans-generation effects. This study intended to suggest further nano-safety studies based on the trends and limitations of current ones. Through a comparative analysis, we investigated peer-reviewed multigenerational studies that used nanomaterials. Thirteen studies on post-generation effects confirmed generational nano-toxicity via several bioassays, such as mortality, fertility, and behavioral assays. Seven studies on trans-generation effects demonstrated nanomaterial pathways to next generations, using imaging techniques. Until now, mechanisms for post-generational nano-toxicity has been rarely proposed. Thus, we propose that complementary studies on such mechanisms are imperative for future studies.
Keywords
Multi-generational Study; Postgenerational Effect; Generational Transfer; Nanomaterial;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nel, A., Xia, T., Madler, L. and Li, N., "Toxic potential of materials at the nanolevel," Science, 311(5761), 622-627(2006).   DOI
2 Kempa, T. J., Day, R. W., Kim, S.-K., Park, H.-G. and Lieber, C. M., "Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells," Energy. Environ. Sci., 6(3), 719-733(2013).   DOI
3 Nohynek, G. J. and Dufour, E. K., "Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: a risk to human health?," Arch. Toxicol., 86(7), 1063-1075(2012).   DOI
4 Siow, K. S., "Mechanical properties of nano-silver joints as die attach materials," J. Alloys. Compd., 514, 6-19(2012).   DOI
5 Kesharwani, P., Jain, K. and Jain, N. K., "Dendrimer as nanocarrier for drug delivery," Prog. Polym. Sci., 39(2), 268-307(2014).   DOI
6 Mauter, M. S. and Elimelech, M., "Environmental applications of carbon-based nanomaterials," Environ. Sci. Technol., 42(16), 5843-5859(2008).   DOI
7 O'connell, M. J., "Carbon nanotubes: properties and applications," CRC press(2006).
8 Mochalin, V. N., Shenderova, O., Ho, D. and Gogotsi, Y., "The properties and applications of nanodiamonds," Nat. Nanotechnol., 7(1), 11-23(2012).   DOI
9 Nowack, B., Krug, H. F. and Height, M., "120 years of nanosilver history: implications for policy makers," Environ. Sci. Technol., 45(4), 1177-1183(2011).   DOI
10 Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K. and von Goetz, N., "Titanium dioxide nanoparticles in food and personal care products," Environ. Sci. Technol., 46(4), 2242-2250(2012).   DOI
11 Zhu, X., Radovic-Moreno, A. F., Wu, J., Langer, R. and Shi, J., "Nanomedicine in the management of microbial infection-Overview and perspectives," Nano Today, 9(4), 478-498(2014).   DOI
12 Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S. and Weiss, S., "Quantum dots for live cells, in vivo imaging, and diagnostics," Science, 307(5709), 538-544(2005).   DOI
13 Kim, T.-H., Cho, K.-S., Lee, E. K., Lee, S. J., Chae, J., Kim, J. W., Kim, D. H., Kwon, J.-Y., Amaratunga, G. and Lee, S. Y., "Full-colour quantum dot displays fabricated by transfer printing," Nat. Photonics, 5(3), 176-182(2011).   DOI
14 Batley, G. E., Kirby, J. K. and McLaughlin, M. J., "Fate and risks of nanomaterials in aquatic and terrestrial environments," Acc. Chem. Res., 46(3), 854-862(2012).   DOI
15 Volker, C., Boedicker, C., Daubenthaler, J., Oetken, M. and Oehlmann, J., "Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multigeneration experiments," PloS One, 8(10), e75026(2013).   DOI
16 Bergamaschi, E., Poland, C., Canu, I. G. and Prina-Mello, A., "The role of biological monitoring in nano-safety," Nano Today, 10(3), 274-277(2015).   DOI
17 Arndt, D. A., Chen, J., Moua, M. and Klaper, R. D., "Multigeneration impacts on Daphnia magna of carbon nanomaterials with differing core structures and functionalizations," Environ. Toxicol. Chem., 33(3), 541-547(2014).   DOI
18 Jacobasch, C., Volker, C., Giebner, S., Volker, J., Alsenz, H., Potouridis, T., Heidenreich, H., Kayser, G., Oehlmann, J. and Oetken, M., "Long-term effects of nanoscaled titanium dioxide on the cladoceran Daphnia magna over six generations," Environ. Pollut., 186, 180-186(2014).   DOI
19 Bundschuh, M., Seitz, F., Rosenfeldt, R. R. and Schulz, R., "Titanium dioxide nanoparticles increase sensitivity in the next generation of the water flea Daphnia magna," PloS One, 7(11), e48956(2012).   DOI
20 Contreras, E. Q., Puppala, H. L., Escalera, G., Zhong, W. and Colvin, V. L., "Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans," Environ. Toxicol. Chem., 33(12), 2716-2723(2014).   DOI
21 Kim, S. W., Kwak, J. I. and An, Y.-J., "Multigenerational Study of Gold Nanoparticles in Caenorhabditis elegans: Transgenerational Effect of Maternal Exposure," Environ. Sci. Technol., 47(10), 5393-5399(2013).   DOI
22 Contreras, E. Q., Cho, M., Zhu, H., Puppala, H. L., Escalera, G., Zhong, W. and Colvin, V. L., "Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure," Environ. Sci. Technol., 47(2), 1148-1154(2013).   DOI
23 Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R. and Dhawan, A., "Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells," Chemosphere, 83(8), 1124-1132(2011).   DOI
24 Wang, Q., Ebbs, S. D., Chen, Y. and Ma, X., "Trans-generational impact of cerium oxide nanoparticles on tomato plants," Metallomics, 5(6), 753-759(2013).   DOI
25 Geisler-Lee, J., Brooks, M., Gerfen, J. R., Wang, Q., Fotis, C., Sparer, A., Ma, X., Berg, R. H. and Geisler, M., "Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana," Nanomater., 4(2), 301-318(2014).   DOI
26 Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R. and Dhawan, A., "A flow cytometric method to assess nanoparticle uptake in bacteria," Cytometry A, 79(9), 707-712(2011).
27 Blickley, T. M., Matson, C. W., Vreeland, W. N., Rittschof, D., Di Giulio, R. T. and McClellan-Green, P. D., "Dietary CdSe/ZnS quantum dot exposure in estuarine fish: Bioavailability, oxidative stress responses, reproduction, and maternal transfer," Aquat. Toxicol., 148, 27-39(2014).   DOI
28 Skoog, K., "Cell division in Escherichia coli," Department of Biochemistry and Biophysics, Stockholm University, 61(2011).
29 Panacek, A., Prucek, R., Safarova, D., Dittrich, M., Richtrova, J., Benickova, K., Zboril, R. and Kvitek, L., "Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster," Environ. Sci. Technol., 45(11), 4974-4979(2011).   DOI
30 Lin, S., Reppert, J., Hu, Q., Hudson, J. S., Reid, M. L., Ratnikova, T. A., Rao, A. M., Luo, H. and Ke, P. C., "Uptake, translocation, and transmission of carbon nanomaterials in rice plants," Small, 5(10), 1128-1132(2009).   DOI
31 Qu, Y., Li, W., Zhou, Y., Liu, X., Zhang, L., Wang, L., Li, Y.-F., Iida, A., Tang, Z. and Zhao, Y., "Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism," Nano lett., 11(8), 3174-3183(2011).   DOI
32 Mohan, N., Chen, C.-S., Hsieh, H.-H., Wu, Y.-C. and Chang, H.-C., "In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans," Nano lett., 10(9), 3692-3699(2010).   DOI
33 Kuo, Y., Hsu, T.-Y., Wu, Y.-C. and Chang, H.-C., "Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo," Biomaterials, 34(33), 8352-8360(2013).   DOI
34 Meyer, J. N., Lord, C. A., Yang, X. Y., Turner, E. A., Badireddy, A. R., Marinakos, S. M., Chilkoti, A., Wiesner, M. R. and Auffan, M., "Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans," Aquat. Toxicol., 100(2), 140-150(2010).   DOI
35 Zanni, E., De Bellis, G., Bracciale, M. P., Broggi, A., Santarelli, M. L., Sarto, M. S., Palleschi, C. and Uccelletti, D., "Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model," Nano Lett., 12(6), 2740-2744(2012).   DOI
36 Scharf, A., Piechulek, A., von Mikecz, A., "Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans," ACS nano, 7(12), 10695-10703(2013).   DOI