• Title/Summary/Keyword: sustainable harvest

Search Result 47, Processing Time 0.019 seconds

Good Agriculture Practice (GAP) and Sustainable Resource Utilization of Chinese Materia Medico

  • Wenyuan Gao;Wei Jia;Hongquan Duan;Luqi Huang;Xiaohe Xiao;Peigen Xiao;Peak, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.103-107
    • /
    • 2002
  • The Good Agriculture Practice (GAP) program, being established in China, is an optimal way for the sustainable utilization of the medicinal plant and animal resources. Most frequently used Chinese materia medica will be mainly produced from the GAP bases in the future. To assure the successful operation of GAP program, standard operating procedure (SOP) should be implemented for specific plants or animals. Both GAP and SOP include the requirements in many aspects from the ecological environment of cultivation place, germplasm and varieties, seedling and transplant, fertilization, irrigation, and field care, to harvest and process, package, transport and storage. As a complex system, GAP demands strong commitment from the pharmaceutical industry, local administrative involvement, long term R&D support, and years of time of development before a satisfactory result can be achieved.

Studies for the Sustainable Management of Oyster Farms in Pukman Bay, Korea: Estimation of Carrying Capacity from Food Availability

  • Jeong, Woo-Geon;Cho, Sang-Man;Lee, Sang-Jun
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.118-129
    • /
    • 2009
  • To develop a sustainable management model for oyster farming in Pukman Bay, Korea, we estimated the carrying capacity for oyster farming using food availability data. Optimal culture densities were calculated to be 124-133 individuals per unit flux area ($m^2$) and 310-330 individuals per string. The present annual production is approximately 1,038 tons/year, which is 87% of the estimated maximum yield of 1,193 tons/year. Therefore, considering annual fluctuations and a critical buffer to reduce ecological impacts, the current level is within optimal conditions. During periods of increased water temperature, energy demand was largely met by high primary production. The food supply significantly decreased as the harvest season approached, and 10 out of 21 oyster farms had a deficient food supply for at least 1 month. Therefore, these farms (39% of the farms within the bay) exceeded optimal densities.

Bioeconomic Management Policy for Fisheries Resources (생물경제학적 어업자원 관리정책에 관한 연구)

  • PYO, Hee-Dong;KWON, Suk-jae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.1
    • /
    • pp.84-98
    • /
    • 2004
  • Due to a publicly owned resources, the overexploitation of the fisheries resources can result in externalities in the form of reduced future levels of yield. These problems can be theoretically improved through effective management of the fishery. The paper illustrates maximum sustainable yield(MSY), maximum economic yield(MEY) and F0.1 level of fishing mortality as the concept of optimal yield, and it theoretically shows that MSY is more appropriate for the optimal yield than MEY where prices increase even though MEY achieves the maximization of economic rent in a fishery assuming constant prices. And the paper presents several fisheries management tools and policies such as input controls, output controls and taxes. As the traditional approach to fishery management, input controls involve restrictions on the physical inputs into the production process(e.g. capital, time or technology) and output controls involve limits on the quantity of fish that can be landed. To introduce user cost into the harvest decisions of rent-seeking fishers, taxation, as a bioeconomic management policy of the fisheries, directly addresses the problems associated with the resource being unpriced. As most fisheries management plans, however, have increasing fisher income as an objective, taxes have not been introduced into any fisheries management policies despite their theoretical attraction.

Ecological Design of Estuarine Environment (하구환경의 생태적 설계)

  • 양홍모
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.23 no.2
    • /
    • pp.167-181
    • /
    • 1995
  • An Ecocomplex is proposed for ecological design of the estuarine environment of Han River, which is designed upon an alternative mamagement concept of estuarine environment. The concept reveals interrelationships among estuary, delta region and urban inland with inputs/outputs and feedbacks among them. The Ecocomplex emphasizes an integration of wastewater treatment with aquaculture, agriculture and recreation, and carries out ecological treatment, recycling, and harvest processes. A module of wastewater treatment pond system is employed in the Ecocomplex, which treats a flow of 3,786 ㎥/day and is composed of a four-facultative-pond series. Treatment ponds stabilize wastewater discharged from the urban area, and concurrently produce algae for commercial or recreational fish farming. Effluent from treatment and fish ponds is reused for agricultural production. Through the waste-algae-fish-vegetable-recreation processes, wastewater from the urban settlement is recycled back to the urban ecosystem. This resource-conserving design approach can maintain a sustainable urban ecosystem, managing an estuarine environment more naturally, healthly, and economically.

  • PDF

An Analytical Study on Solar Energy Systems at the Energy Eco-Science Center (에너지생태과학관의 태양에너지 시스템 분석 연구)

  • Lim, Sang-Hoon;Chun, Won-Gee;Hyun, Jun-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.593-596
    • /
    • 2006
  • This paper introduces various natural energy systems installed at the Eco-Science Center in Geumsan near Taejon. The center, especially, features different solar energy systems to harvest the solar energy to its full extent. Such passive schemes as direct gain and at lacked sun space are applied along with active solar ingredients using flat plate and double skin solar collectors. Space and water heating depends very little on the conventional means. Also a number of photovoltaic modules deployed within its premise supplies power to drive a water pump for the biotop. Combined with other natural energy utilizing systems, the solar energy systems make an exemplary model of a self sustainable public facility which is the first of its kind in Korea.

  • PDF

Identification of QTLs Associated with Physiological Nitrogen Use Efficiency in Rice

  • Cho, Young-Il;Jiang, Wenzhu;Chin, Joong-Hyoun;Piao, Zhongze;Cho, Yong-Gu;McCouch, Susan R.;Koh, Hee-Jong
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.72-79
    • /
    • 2007
  • Demand for low-input sustainable crop cultivation is increasing to meet the need for environment-friendly agriculture. Consequently, developing genotypes with high nutrient use efficiency is one of the major objectives of crop breeding programs. This study was conducted to identify QTLs for traits associated with physiological nitrogen use efficiency (PNUE). A recombinant inbred population (DT-RILs) between Dasanbyeo (a tongil type rice, derived from an indica ${\times}$ japonica cross and similar to indica in its genetic make-up) and TR22183 (a Chinese japonica variety) consisting of 166 $F_8$ lines was developed and used for mapping. A frame map of 1,409 cM containing 113 SSR and 103 STS markers with an average interval of 6.5 cM between adjacent marker loci was constructed using the DT-RILs. The RILs were cultivated in ordinary-N ($N-P_2O_5-K_2O=100-80-80kg/ha$) and low-N ($N-P_2O_5-K_2O=50-80-80kg/ha$) (100 kg/ha) conditions. PNUE was positively correlated with the harvest index and grain yield in both conditions. Twenty single QTLs (S-QTLs) and 58 pairs of epistatic loci (E-QTLs) were identified for the nitrogen concentration of grain, nitrogen concentration of straw, nitrogen content of shoot, harvest index, grain yield, straw yield and PNUE in both conditions. The phenotypic variance explained by these S-QTLs and E-QTLs ranged from 11.1 to 44.3% and from 16.0% to 63.6%, respectively. The total phenotypic variance explained by all the QTLs for each trait ranged from 35.8% to 71.3%, showing that the expression of PNUE and related characters depends signify- cantly upon genetic factors. Both S-QTLs and E-QTLs may be useful for marker-assisted selection (MAS) to develop higher PNUE genotypes.

A Study on the Analysis of Agricultural and Livestock Operations Using ICT-Based Equipment

  • Gokmi, Kim
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.215-221
    • /
    • 2020
  • The paradigm of agriculture is also changing to address the problem of food shortages due to the increase of the world population, climate conditions that are increasingly subtropical, and labor shortages in rural areas due to aging population. With the development of Information Communication Technology (ICT), our daily lives are changing rapidly and heralds a major change in agricultural management. In a hyper-connected society, the introduction of high-tech into traditional Agriculture of the past is absolutely necessary. In the development process of Agriculture, the first generation produced by hand, the second generation applied mechanization, and the third generation introduced automation. The fourth generation is the current ICT operation and the fifth generation is artificial intelligence. This paper investigated Smart Farm that increases productivity through convergence of Agriculture and ICT, such as smart greenhouse, smart orchard and smart Livestock. With the development of sustainable food production methods in full swing to meet growing food demand, Smart Farming is emerging as the solution. In overseas cases, the Netherlands Smart Farm, the world's second-largest exporter of agricultural products, was surveyed. Agricultural automation using Smart Farms allows producers to harvest agricultural products in an accurate and predictable manner. It is time for the development of technology in Agriculture, which benchmarked cases of excellence abroad. Because ICT requires an understanding of Internet of Things (IoT), big data and artificial intelligence as predicting the future, we want to address the status of theory and actual Agriculture and propose future development measures. We hope that the study of the paper will solve the growing food problem of the world population and help the high productivity of Agriculture and smart strategies of sustainable Agriculture.

Manipulation of Cassava Cultivation and Utilization to Improve Protein to Energy Biomass for Livestock Feeding in the Tropics

  • Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.463-472
    • /
    • 2003
  • Cassava (Manihot esculenta, Crantz), an annual tropical tuber crop, was nutritionally evaluated as a foliage for ruminants, especially dairy cattle. Cultivation of cassava biomass to produce hay is based on a first harvest of the foliage at three months after planting, followed every two months thereafter until one year. Inter-cropping of leguminous fodder as food-feed between rows of cassava, such as Leucaena leucocephala or cowpea (Vigna unculata), enriches soil fertility and provides additional fodder. Cassava hay contained 20 to 25% crude protein in the dry matter with good profile of amino acids. Feeding trials with cattle revealed high levels of DM intake (3.2% of BW) and high DM digestibility (71%). The hay contains tannin-protein complexes which could act as rumen by - pass protein for digestion in the small intestine. As cassava hay contains condensed tannins, it could have subsequent impact on changing rumen ecology particularly changing rumen microbes population. Therefore, supplementation with cassava hay at 1-2 kg/hd/d to dairy cattle could markedly reduce concentrate requirements, and increase milk yield and composition. Moreover, cassava hay supplementation in dairy cattle could increase milk thiocyanate which could possibly enhance milk quality and milk storage, especially in small holder-dairy farming. Condensed tannins contained in cassava hay have also been shown to potentially reduce gastrointestinal nematodes in ruminants and therefore could act as an anthelmintic agent. Cassava hay is therefore an excellent multi-nutrient source for animals, especially for dairy cattle during the long dry season, and has the potential to increase the productivity and profitability of sustainable livestock production systems in the tropics.

Growth, Hay Yield and Chemical Composition of Cassava and Stylo 184 Grown under Intercropping

  • Kiyothong, K.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.799-807
    • /
    • 2004
  • The objective of this field experiment was to investigate the growth, hay yield and chemical composition of cassava and stylo 184 grown under intercropping. The experiment was arranged in a Randomized Complete Block (RCB) design with 5 treatments and 4 replications. The treatments were: sole crop cassava (C); sole crop stylo 184 (S) and three intercropping treatments comprising an additive series of one (SC), two (SSC) and three (SSSC) rows of stylo 184 to one row of cassava. The results showed that leaf area per plant (LA) of cassava was significantly higher (p<0.05) in the sole crop relative to the intercropping treatments. Both total hay yield and CPDM yield were significantly higher (p<0.05) for C treatment and lower (p<0.05) for SSSC treatment. The total hay yield and CPDM yield were significantly greater (p<0.05) in the sole crop relative to the intercropping treatments. At the first and second harvests, CP content was similar among treatments; while at third and fourth harvests, CP contents were significantly greater (p<0.05) for the intercropping treatment relative to the sole crop. At the first and second harvest, NDF contents were significantly greater (p<0.05) in the sole crop relative to the intercropping treatments, whereas NDF contents were similar among intercropping treatments. Leaf area of stylo 184 at first and second harvest were significantly greater (p<0.05) for C, SC and SSC as compared with the SSSC treatments. At each harvesting, there were no significant differences in ash, CP, NDF, ADF and ADL contents of stylo 184 hay between the sole crop and intercropping treatments, except for the first harvest. ADF contents were significantly greater (p<0.05) in S, SC treatments relative to SSC and SSSC treatments. Both collective hay yield and CPDM yield of cassava and stylo 184 were significantly greater (p<0.05) for the SSC treatment and significantly lower (p<0.05) for the S treatment. Collective hay yield and CPDM yield were significantly greater (p<0.05) for the intercropping treatments relative to the sole crop. Based on this research, it was concluded that stylo 184 showed potential for intercropping with cassava. Intercropping cassava with stylo 184 has beneficial effects and can improve foliage biomass yield and soil fertility, which would be a more sustainable system than growing the cassava as a pure stand. In terms of hay yield and CP production, two rows of stylo 184 to one row of cassava could be the optimal pattern for this intercropping system.

The Dynamic Optimal Fisheries Management for Spanish Mackerel (삼치어종의 동태적 최적어업관리)

  • Cho, Hoonseok;Nam, Jongoh
    • Environmental and Resource Economics Review
    • /
    • v.29 no.3
    • /
    • pp.363-388
    • /
    • 2020
  • The purposes of this study are to not only estimate optimal harvests and efforts using the surplus production methods for Spanish mackerel caught by multiple fishing gears, but provide dynamic optimal fisheries management for these gears using the current value Hamiltonian method. To achieve the above purposes this study uses several models such as Gavaris's general linear model for standardizing fishing efforts, surplus production method for estimating biological and technological coefficients, current value Hamiltonian method for estimating dynamic optimal harvest and efforts, and sensitivity analysis for diagnosing economic influences of these fisheries. As a result, this study showed that Spanish mackerel was overfished by multiple fishing gears based on surplus production method and the current value Hamiltonian method. Also, this study found that when the price and cost proportionally changed, the optimal harvest and fishing effort sensitively responded to the stock level of Spanish mackerel. Next, this study suggested that the multiple fishing gears for Spanish mackerel should reduce unnecessary costs such as operating time or inefficient fuel consumption. Finally, this study provided reasons Spanish mackerel should be included in the TAC system in a view of profit maximization based on sustainable use of the Spanish mackerel.