• Title/Summary/Keyword: sustainable bioengineering

Search Result 13, Processing Time 0.028 seconds

Plant-Based Decellularization: A Novel Approach for Perfusion-Compatible Tissue Engineering Structures

  • Md Mehedee Hasan;Ashikur Rahman Swapon;Tazrin Islam Dipti;Yeong-Jin Choi;Hee-Gyeong Yi
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1003-1016
    • /
    • 2024
  • This study explores the potential of plant-based decellularization in regenerative medicine, a pivotal development in tissue engineering focusing on scaffold development, modification, and vascularization. Plant decellularization involves removing cellular components from plant structures, offering an eco-friendly and cost-effective alternative to traditional scaffold materials. The use of plant-derived polymers is critical, presenting both benefits and challenges, notably in mechanical properties. Integration of plant vascular networks represents a significant bioengineering breakthrough, aligning with natural design principles. The paper provides an in-depth analysis of development protocols, scaffold fabrication considerations, and illustrative case studies showcasing plant-based decellularization applications. This technique is transformative, offering sustainable scaffold design solutions with readily available plant materials capable of forming perfusable structures. Ongoing research aims to refine protocols, assess long-term implications, and adapt the process for clinical use, indicating a path toward widespread adoption. Plant-based decellularization holds promise for regenerative medicine, bridging biological sciences with engineering through eco-friendly approaches. Future perspectives include protocol optimization, understanding long-term impacts, clinical scalability, addressing mechanical limitations, fostering collaboration, exploring new research areas, and enhancing education. Collectively, these efforts envision a regenerative future where nature and scientific innovation converge to create sustainable solutions, offering hope for generations to come.

Development of Physical Cell Lysis Using a Spiked CNT Membrane for Polyhydroxybutyrate Recovery (폴리하드록시부틸레이트 회수를 위한 물리적 세포 파쇄용 돌기형 탄소나노튜브 분리막 제작)

  • Jiwon Mun;Youngbin Baek
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.390-397
    • /
    • 2023
  • Conventional extraction methods for polyhydroxybutyrate (PHB), a sustainable alternative to petroleum-based plastics, cause a decrease in molecular weight and a change in properties. In this work, we developed a method to extract PHB accumulated in microorganisms by physical disruption through filtration using a spiked carbon nanotube (CNT) membrane with functionalized CNT. In addition, filtration of the PHB-containing microbial solution was performed to confirm PHB extraction, which was found to be 4% more efficient than chloroform, the most used extraction method. These results indicate that the spiked CNT membrane has potential in the bioplastics recovery process.

Marine Bioprocess Engineering: Building Bridges from Discovery to Commercialization of Marine Natural Products

  • Zhang, Wei;Jin, Meifeng;Yu, Xinju;Deng, Maicun;Yuan, Quan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.137-140
    • /
    • 2000
  • Numerous novel marine natural products have been discovered and isolated from varied marine organisms by the diligent bio-prospectors over the past decades. An assessment of the current status of commercial development of these natural compounds indicates only minimal commercialization due to the lack of sustainable supply. To bridge the gaps between discovery and commercialization of these tantalizing bioactive compounds, marine bioprocess engineering is the key for its success. The problems, challenges and opportunities for marine bioprocess engineers are examined for the timely transformation of the discovery into commercial reality. Marine bioprocess engineers will find it the most rewarding practice of their expertise in diving into the ocean.

  • PDF

Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii

  • Kose, Ayse;Oncel, Suphi S.
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • The green microalgae Chlamydomonas reinhardtti is well-known specie in the terms of $H_2$ production by photo fermentation and has been studying for a long time. Although the $H_2$ production yield is promising; there are some bottlenecks to enhance the yield and efficiency to focus on a well-designed, sustainable production and also scaling up for further studies. D1 protein of photosystem II (PSII) plays an important role in photosystem damage repair and related to $H_2$ production. Because Chlamydomonas is the model algae and the genetic basis is well-studied; metabolic engineering tools are intended to use for enhanced production. Mutations are focused on D1 protein which aims long-lasting hydrogen production by blocking the PSII repair system thus $O_2$ sensitive hydrogenases catalysis hydrogen production for a longer period of time under anaerobic and sulfur deprived conditions. Chlamydomonas CC124 as control strain and D1 mutant strains(D240, D239-40 and D240-41)are cultured photomixotrophically at $80{\mu}mol\;photons\;m^{-2}s^{-1}$, by two sides. Cells are grown in TAP medium as aerobic stage for culture growth; in logarithmic phase cells are transferred from aerobic to an anaerobic and sulfur deprived TAP- S medium and 12 mg/L initial chlorophyll content for $H_2$ production which is monitored by the water columns and later detected by Gas Chromatography. Total produced hydrogen was $82{\pm}10$, $180{\pm}20$, $196{\pm}20$, $290{\pm}30mL$ for CC124, D240, D239-40, D240-41, respectively. $H_2$ production rates for mutant strains was $1.3{\pm}0.5mL/L.h$ meanwhile CC124 showed 2-3 fold lower rate as $0.57{\pm}0.2mL/L.h$. Hydrogen production period was $5{\pm}2days$ for CC124 and mutants showed a longer production time for $9{\pm}2days$. It is seen from the results that $H_2$ productions for mutant strains have a significant effect in terms of productivity, yield and production time.

State-of-the-art of Life Cycle Assessment for Biodiesel Production from Plant Biomass (식물성 바이오매스로부터 바이오디젤 생산에 대한 LCA 연구 현황)

  • Seo, Bong-Kuk;Song, Seung-Koo
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Biodiesel is a type of biofuel obtained from bioresources and able to use in diesel vehicles as an alternative/additive to petro diesel. In recent biodiesel research, there are three main issues which include high quality biodiesel, low cost feed stock and a highly efficient biodiesel production process. The sustainable production and use of biodiesel are attracting much attention in the renewable energy field. In this paper, we review some of the literatures related to environmental and economic evaluation for biodiesel production and analysis the issues including life cycle assessment (LCA), global warming potential (GWP), energy consumption, biodiesel production cost, production technologies and feedstock.

Seaweed Biomass Resources in Korea (한국의 해조류 바이오매스자원 현황)

  • Lee, Shin-Youb;Ahn, Jae-Woo;Hwang, Hyeong-Jin;Lee, Sun-Bok
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.267-276
    • /
    • 2011
  • There is a growing worldwide interest in the potential of marine biomass as an environmentally friendly and economically sustainable resource. Due to the great lack of comprehensive information about domestic seaweed resources, this study aimed to analyze the existing literature on the production and types of domestic seaweed species. Based on this data the possibilities of industrial use of domestic seaweed for the production of biofuels and bioplastics had been assessed. Our review took into account the seaweed species on domestic coasts as well as the species currently in great production via seaweed farming. Due to their wide distribution, their status as farmed crops, and the likelihood of securing their reliable supply, Codium fragile, Hizikia fuciformis, and Gelidium amansii were deemed to be the most appropriate candidates for domestic industrial use. The industrial potential of seaweed biomass was also explored by comparing the predicted amount of biomass necessary to replace current gasoline and plastics use with currently available farming space. The results of our study imply that once a steady and adequate supply of the proper kinds of seaweed can be secured through seaweed farming, there is a great potential for the development of new seaweed-based biofuels and bioplastics industries in Korea.

A Study on the Solubilization and Dewaterability of Ultrasonically Treated Wastewater Sludge (초음파 처리한 하수 슬러지의 가용화와 탈수 특성 연구)

  • Youn, You-Sik;Kim, Dong-Jin;Yoo, Ik-Keun;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.675-682
    • /
    • 2009
  • Sludge minimization from wastewater treatment plant is becoming more important to save disposal costs and to contribute to sustainable development. For the reduction of sludge production, solubilization and dewaterability of sludge are important factors in sludge processing. Ultrasonic treatment has been used to enhance sludge solubility and dewaterability with anaerobic digestion sludge, primary sludge, and activated sludge. At the ultrasonic power of 0.2 kW/L for 1 hour, anaerobic sludge and activated sludge showed higher solubilization efficiency than the primary sludge in terms of COD, proteins, and suspended solids. Ultrasonic treatment decreased sludge dewaterability and sludge settling characteristics up to 720 kJ/L of ultrasonic energy. In conclusion, ultrasonic treatment was effective for sludge solubilization but it deteriorate dewaterability (specific resistance) and settling characteristics (SVI) of sludge at the experimental conditions.

Performance of Pilot-Scale Biodiesel Production System (파일럿 규모의 바이오디젤 생산공정의 실증연구)

  • Jeong, Gwi-Taek;Park, Jae-Hee;Park, Seok-Hwan;Park, Don-Hee
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • Biodiesel (fatty acid alkyl esters), which is produced from sustainable resources such as vegetable oil, animal fat and waste oils, have used to as substitutes for petro-diesel. In this study, we investigate the performance of 30 L and 300 L pilot-scale biodiesel production system using alkali-catalyst transesterification from soybean oil and rapeseed oil produced at Jeju island in Korea. The 30 L-scale biodiesel production was performed to in the condition of reaction temperature $65^{\circ}C$, catalyst amount 1% (w/w) and oil to methanol molar ratio 1 : 8. At that reaction condition, the fatty acid methyl ester contents of product are above 98% within reaction time 30 min. Also, the conversion yield of over 98% was obtained in 300 L-scale biodiesel production system using rapeseed oil and soybean oil. The quality of biodiesel produced from reaction system was satisfied to recommended quality standard of Korea. Our results may provide useful information with regard to the scale-up of more economic and efficient biodiesel production process.

The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Sibhghatulla Shaikh;Jeong Ho Lim;Shahid Ali;Sung Soo Han;Sun Jin Hur;Jung Hoon Sohn;Eun Ju Lee;Inho Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.16-31
    • /
    • 2023
  • Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-β1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.

Lignin Removal from Barley Straw by Ethanosolv Pretreatment (Ethanosolv 전처리에 의한 보릿짚의 리그닌 제거)

  • Kim, Young-Ran;Yu, An-Na;Chung, Bong-Woo;Han, Min-Hee;Choi, Gi-Wook
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.527-532
    • /
    • 2009
  • Lignocellulose represents a key sustainable source of biomass for transformation into biofuels and bio-based products. Unfortunately, lignocellulosic biomass is highly recalcitrant to biotransformation, both microbial and enzymatic, which limits its use and prevents. As a result, effective pretreatment strategies are necessary. The vast majority of pretreatment strategies have focused on achieving a reduction of lignin content. In this work, an ethanosolv pretreatment has been evaluated for extracting lignin from barley straw. 75% ethanol was used as a pretreatment solvent to extract lignin from barley straw. The influence on delignification of three independent variables are temperature, time, catalyst (1 M $H_2SO_4$) dose. The best pretreatment condition observed was $180^{\circ}C$, 120 min, 0.2% $H_2SO_4$ and delignification was 38%. A combined roasting and ethanosolv, 2-step pretreatment, was developed in order to improve the delignification. Roasting didn't increase the delignification but reduced the pretreatment time. X-ray diffraction results indicated that these physical changes enhance the enzymatic digestibility in the ethanosolv treated barley straw. The cellulose in the pretreated barley straw becomes more crystalline without undergoing ethanosolv.