• Title/Summary/Keyword: suspension modeling

Search Result 169, Processing Time 0.029 seconds

Analysis of relative displacement of electromagnetic suspension using CARSIM and Simulink (CARSIM- Simulink연동 해석을 이용한 전자기 현가장치의 상대변위 해석)

  • Kim, Ji-Hye;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.82-88
    • /
    • 2018
  • This study investigated the structure of an 8-pole 8-slot linear generator, which acts as an electromagnetic damper by combining the structure of an electromagnetic suspension device capable of generating electrical energy through energy harvesting by absorbing the vibration energy from the road surface while driving. To compare the energy harvesting effect of the electromagnetic suspension according to the actual road surface, a driving road test was simulated for two actual road conditions, an asphalt road surface and unpacked road surface condition, using a civilian combined vehicle model in conjunction with a vehicle simulation program, Carsim and Simulink. As a result, the relative displacements of the suspensions on the asphalt road surface and the unpaved road were 8 mm and 13 mm, respectively. By applying the suspension displacement value derived by modeling the linear generator coupled to the electromagnetic suspension, the simulation was then performed for an analysis time of 0.3s by applying the same analytical conditions using the commercial electromagnetic analysis program, ANSYS MAXWELL, The average power generation on the unpacked roads and asphalt roads was 198.6W and 98.7W respectively, which was 103.7% higher for unpackaged roads. Finally, to compare the sensitivity of the road surface frequency and the suspension input displacement to the power generation output, the sensitivity of the two variables was 1.725 and 1.283, respectively, and the road surface frequency had a 34.5% higher effect on the average power generation.

A Study on Fatigue Safety Estimation of Cross Frame of Suspension Bridge(I) - Estimation by Nominal Stress - (현수교 횡프레임의 피로안전성 평가에 관한 연구(I) - 공칭응력에 의한 평가 -)

  • Kyung, Kab Soo;Jeon, Jun Chang;Su, Seok Ku;Yong, Hwan Sun
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.397-407
    • /
    • 1999
  • In this paper, the fatigue safety in the suspension bridge is investigated by using nominal and variable stress, respectively. The technique on structural modeling and the fatigue evaluation using nominal stress are mainly dealt with in this paper. To make the finite element analysis model reflecting the actual structural behavior of the suspension bridge with cross frame, the parametric study is carried out. In this study, the influence of supporting condition. the difference of the results of 2- and 3-D analysis and the number of cross frames modelled in are considered. The nominal stress under the real traffic flow of the bridge is calculated by the combination of the stresses due to the unit DB-24 loading. The nominal stresses for details under consideration are compared with allowable stress ranges specified in the codes and the results are discussed.

  • PDF

Wake-induced vibration of the hanger of a suspension bridge: Field measurements and theoretical modeling

  • Li, Shouying;Deng, Yangchen;Lei, Xu;Wu, Teng;Chen, Zhengqing
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.169-180
    • /
    • 2019
  • The underlying mechanism of the wind-induced vibration of the hangers of the suspension bridges is still not fully understood at present and hence is comprehensively examined in this study. More specifically, a series of field measurements on the No. 2 hanger of the Xihoumen Bridge was first carefully conducted. Large amplitude vibrations of the hanger were found and the oscillation amplitude of the leeward cable was obviously larger than that of the windward cables. Furthermore, the trajectory of the leeward cable was close to an ellipse, which agreed well with the major characteristics of wake-induced vibration. Then, a theoretical model for the wake-induced vibration based on a 3-D continuous cable was established. To obtain the responses of the leeward cable, the finite difference method (FDM) was adopted to numerically solve the established motion equation. Finally, numerical simulations by using the structural parameters of the No. 2 hanger of the Xihoumen Bridge were carried out within the spatial range of $4{\leq}X{\leq}10$ and $0{\leq}Y{\leq}4$ with a uniform interval of ${\Delta}X={\Delta}Y=0.25$. The results obtained from numerical simulations agreed well with the main features obtained from the field observations on the Xihoumen Bridge. This observation indicates that the wake-induced vibration might be one of the reasons for the hanger oscillation of the suspension bridge. In addition, the effects of damping ratio and windward cable movement on the wake-induced vibration of the leeward cable were numerically investigated.

EXPERIMENTAL STUDY ON THE BUSHING CHARACTERISTICS UNDER SEVERAL EXCITATION INPUTS FOR BUSHING MODELING

  • Ok, J.K.;Yoo, W.S.;Sohn, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.455-465
    • /
    • 2007
  • The bushing element shows nonlinear characteristics in both displacements and frequencies, also with hysteretic responses for repeated vibrational excitations. Since the characteristics of the rubber bushing significantly affects the accuracy of the vehicle dynamic simulation result, it should be accurately modeled in the vehicle suspension model. To develop an accurate bushing model for vehicle dynamics analysis, the bushing characteristics under several excitation inputs must be known. In this paper, a 3-axis tester was used to capture the bushing characteristics. The random inputs, sine inputs, and step inputs were imposed on each axis of the bushing. Also, two-axis inputs, the radial-axial and radial-normal inputs, were simultaneously imposed on the tester. Three-axis inputs including the radial-axial-normal direction were supplied to the tester. Bushing characteristics of each case were precisely analyzed. These results could be available for dynamic modeling of bushing.

Three-Dimensional Modeling for Impact Behavior Analysis (충돌시 3차원 거동특성 해석을 위한 모델링)

  • 하정섭;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.353-356
    • /
    • 2002
  • In vehicle accidents, the rolling, pitching, and yawing which are produced by collisions affect the motions of vehicle. Therefore, vehicle behavior under impact situation should be analyzed in three-dimension. In this study, three-dimensional vehicle dynamic equations based on impulse-momentum conservation principles under vehicle impact are introduced for simulation. This analysis has been performed by the real vehicle impact data from JARI and RICSAC. This study suggested each system modeling such as suspension, steering, brake and tire as well as the appropriate vehicle behavior simulation model with respect to pre and post impact.

  • PDF

A Study on the Analysis of the Shift Characteristics and the Driving Comfort for the Parallel Type hybrid Drivertrain System for Transit Bus equipped AMT (자동화 변속기를 장착한 버스용 병렬형 하이브리드 동력전달계의 변속 특성 해석과 승차감에 관한 연구)

  • 조한상;이장무;박영일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.136-148
    • /
    • 1999
  • Detailed mathematical models of hybrid drivertrain components are presented and numerical simulations are carried out to analyze the shift characteristics and to improve the driving comfortability when the hybrid drivetrain is applied at the vehicle . Theoretical results are compared with experimental ones from the dynamometer as same condition in order to prove the appropriateness of modeling . Adding the vehicle body modeling, included in the suspension and the engine mount, it is possible to predict the dynamic behavior and shift characteristics more actually when shifts are occurred by automated manual transmission(AMT). these additional results are also compared with the same simulation ones of internal combustion engined vehicle equipped conventional manual transmission. Hence, it can be expected that the hybrid vehicle with AMT has a good shift quality.

  • PDF

Modeling and Dynamic Characteristics Analysis of a Continuously Variable Damper with Electro-Hydraulic Pressure Control Valve

  • Moon, Do-Hong;Chul, Sohn-Hyun;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.174.5-174
    • /
    • 2001
  • In this paper, mathematical modeling and dynamic characteristics analysis of a continuously variable damper used for semi-active suspension systems are investigated. After analyzing the geometry of a typical continuously variable damper, models for various components including piston, orifices, spring, and valves are proposed and the flow equations during expansion and compression strokes are derived. To verify the mathematical models developed, the dynamic characteristics of the models are simulated using MATLAB/SIMULINK and are compared with experimental results. It was confirmed that the developed models represent well the actual damper and can be used for control system design.

  • PDF

Modeling and Dynamic Characteristics Analysis of a Continuously Variable Damper with Electro-Hydraulic Pressure Control Valve (반능동현가장치용 전자제어식 연속가변댐퍼의 모델링 및 동특성 해석)

  • Do, Hong-Mun;Hong, Gyeong-Tae;Hong, Geum-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.158-166
    • /
    • 2002
  • A mathematical model and dynamic characteristics ova continuously variable damper for semi-active suspen- sion systems are investigated. After analyzing the geometry of a typical continuously variable damper, mathematical models fur individual components including piston, orifices, spring, and valves are first derived and then the flow equations for extension and compression strokes are investigated. To verify the developed mathematical model, the dynamic response of the model are simulated using MATLAB/SIMULINK and are compared with experimental results. The proposed model can be used not only for mechanical components design but also for control system design.

A Study on the Nonlinear Dynamic Modeling and Analysis of Damping Force Characteristics of Automotive Shock Absorber (차량용 충격흡수기의 비선형 동적거동 모델링 및 감쇠력 특성해석에 대한 연구)

  • 이춘태;곽동훈;정봉호;이지걸
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.104-111
    • /
    • 2003
  • The performance of shock absorber is directly related to the car behaviour and performance, both for handling and comfort. In this study, a mathematical nonlinear dynamic model and computational method are introduced to study the flow and performance of shock absorber. The flow characteristics of components(piston and body valve) are investigated and applied to dynamic modeling of shock absorber to predict the damping force. The simulation results agree with the test data well. The shock absorber model proposed in this paper is applicable as a part of a full vehicle suspension simulation.