DOI QR코드

DOI QR Code

Analysis of relative displacement of electromagnetic suspension using CARSIM and Simulink

CARSIM- Simulink연동 해석을 이용한 전자기 현가장치의 상대변위 해석

  • Kim, Ji-Hye (Division of Mechanical Engineering, Yeungnam University) ;
  • Kim, Jin-Ho (Division of Mechanical Engineering, Yeungnam University)
  • 김지혜 (영남대학교 기계공학부) ;
  • 김진호 (영남대학교 기계공학부)
  • Received : 2018.02.02
  • Accepted : 2018.05.04
  • Published : 2018.05.31

Abstract

This study investigated the structure of an 8-pole 8-slot linear generator, which acts as an electromagnetic damper by combining the structure of an electromagnetic suspension device capable of generating electrical energy through energy harvesting by absorbing the vibration energy from the road surface while driving. To compare the energy harvesting effect of the electromagnetic suspension according to the actual road surface, a driving road test was simulated for two actual road conditions, an asphalt road surface and unpacked road surface condition, using a civilian combined vehicle model in conjunction with a vehicle simulation program, Carsim and Simulink. As a result, the relative displacements of the suspensions on the asphalt road surface and the unpaved road were 8 mm and 13 mm, respectively. By applying the suspension displacement value derived by modeling the linear generator coupled to the electromagnetic suspension, the simulation was then performed for an analysis time of 0.3s by applying the same analytical conditions using the commercial electromagnetic analysis program, ANSYS MAXWELL, The average power generation on the unpacked roads and asphalt roads was 198.6W and 98.7W respectively, which was 103.7% higher for unpackaged roads. Finally, to compare the sensitivity of the road surface frequency and the suspension input displacement to the power generation output, the sensitivity of the two variables was 1.725 and 1.283, respectively, and the road surface frequency had a 34.5% higher effect on the average power generation.

본 논문에서는 차량 주행 시 노면으로부터 진동 에너지를 흡수해 에너지 하베스팅을 통해 전기에너지 발생이 가능한 전자기 현가장치의 구조와 현가장치 내에 결합되어 전자기 댐퍼 역할을 하는 8극 8상의 선형 발전기의 구조를 검토하였다. 실제 주행 노면에 따른 전자기 현가장치의 에너지 하베스팅 효과를 비교하기 위해 차량 시뮬레이션 프로그램인 Carsim과 Simulink를 연동하여 민군 겸용 차량 모델을 사용해 두 가지 실제 노면인 아스팔트 노면과 비포장도로 노면 조건에 대한 모의 주행시험을 수행한 결과, 아스팔트 노면과 비포장도로에서 현가장치의 상대 변위 각각 8mm, 13mm의 결과가 나타났다. 다음으로 전자기 현가장치 내에 결합된 선형 발전기를 모델링 하여 도출한 현가장치 상대 변위 값을 적용해 상용 전자기 해석 프로그램인 ANSYS MAXWELL을 이용해 동일한 해석조건을 적용하여 해석 시간 0.3s 동안 전자기 시뮬레이션을 수행하여 시간에 따른 발전량 결과를 도출해 비교하였으며 비포장도로와 아스팔트 노면에서의 평균 발전량은 각각 198.6W, 98.7W로 비포장도로의 경우 103.7% 높은 값을 보이는 것을 확인하였다. 마지막으로 노면의 주파수와 현가장치 입력 변위가 발전 출력에 영향을 끼치는 민감도를 비교한 결과 두 변수의 민감도는 각각 1.725, 1.283으로 노면 주파수가 전자기 시뮬레이션 출력변수인 평균 발전량에 34.5 % 높은 영향을 끼치는 결과를 확인하였다.

Keywords

References

  1. G. Manla, N. M. White, J. Tudor, "Harvesting Energy from Vehicle Wheels", Solid-State Sensors, Actuators and Microsystems Conference, pp. 1389-1392, 2009. DOI: https://doi.org/10.1109/SENSOR.2009.5285831
  2. M. Wischke, M. Masur, P. Woias, "A Hybrid Generator for Vibration Energy Harvesting Applications", Solid-State Sensors, Actuators and Microsystems Conference, 2009.
  3. Z. Li, L. Zuo, J. Kuang, and G. Luhrs, "Energy-harvesting shock absorber with a mechanical motion rectifier", Smart Materials and Structures, vol. 22, pp. 1-10, 2012. DOI: https://doi.org/10.1115/DETC2012-71386
  4. E. Asadi, R. Ribeiro, M. B. Khamesee, A. Khajepour, "A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment" IOP Int. Smart Materials and Structures, Volume: 24, Number: 7, May 2015.
  5. I. Martins, J. Esteves, G. D. Marques, F. P. D. Silva, "Permanentmagnets linear actuators applicability in automobile active suspensions," IEEE Transaction on Vehicular Technology, vol. 55, no. 1, pp. 86-94, 2006. DOI: https://doi.org/10.1109/TVT.2005.861167
  6. W. C. Kruckemeyer, H. C. Buchanan, Jr., and W. V. Fannin, "Rotational actuator for vehicle suspension damper", U.S. Patent 4 644 200, 1987.
  7. Y. Zhang, K. Huang, F. Yu, Y. Gu, D. Li, "Experimental verification of energy-regenerative feasibility for an automotive electrical suspension system", IEEE Conference on Vehicular Electronics and Safety, 2007. DOI: https://doi.org/10.1109/ICVES.2007.4456407
  8. Y. Hua, H. Jiang, G. Geng, "Electronic differential control of 2WD electric vehicle considering steering stability", AIP Conference Proceedings 1820, 070005, 2017.
  9. L. Zuo, B. Scully, J. Shestani, Y. Zhou, "Design and characterization of an electromagnetic energy harvester for vehicle suspensions", Smart Materials and Structures, 2010. DOI: https://doi.org/10.1088/0964-1726/19/4/045003
  10. J. H. Lee, K. J. Kim, "Study of the vehicle performance of a series hybrid vehicle using CARSIM and Simulink", The Korean Society of Automotive Engineers, 2949-2952, 2010.
  11. X. Xin, W. Zhang, C. Shen, H. Zheng, "Control strategy of four-wheel independent drive electric vehicle based on vehicle velocity estimation and switchover", Transactions of the Institute of Measurement and Control, vol. 39, pp. 965, 2017. https://doi.org/10.1177/0142331215625767
  12. H. W. Ha, J. M. Kim, B. G. Park, H. Y. Seo, J. M. Lee, "Simulations of In-wheel Electric Vehicle using Carsim and Simulink", Journal of Institute of Control, Robotics and Systems, 374-375, 2012.
  13. I. S. Suh, K. R. Hwang, M. Y. Lee, J D. Kim, "In-wheel motor application in a 4WD electric vehicle with foldable body concept", Electric Machines & Drives Conference (IEMDC) 2013 IEEE International, pp.1235-1240, 2013. DOI: https://doi.org/10.1109/IEMDC.2013.6556292