• Title/Summary/Keyword: suspended solids

Search Result 590, Processing Time 0.031 seconds

Long-term Variation and Characteristics of Water Quality in the Yeoja Bay of South Sea, Korea (여자만 수질환경의 특성과 장기변동)

  • Park, Soung-Yun;Kim, Sang-Soo;Kim, Pyoung-Joong;Cho, Eun-Seob;Kim, Byong-Man;Jeon, Sang-Baek;Jang, Su-Jeng
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.203-218
    • /
    • 2011
  • Long-term trends and distribution patterns of water quality were investigated in the Yeoja Bay of South Sea, Korea from 1976 to 2010. Water samples were collected at 3 stations and physicochemical parameters were analyzed including water temperature, salinity, hydrogen ion concentration (pH), dissolved oxygen (DO), chemical oxygen demand (COD), suspended solids (SS) and nutrients. Spatial distribution patterns of temperature, pH and DO were not clear among stations but the seasonal variations were distinct except ammonium. The trend analysis by principal component analysis (PCA) during 31 years revealed the significant variations in water quality in the study area. Spatial water qualities were discriminated into 2 clusters by PCA; station cluster 1 and 2~3. Annual water qualities were clearly discriminated into 4 clusters by PCA. By this multi-variate analysis, the annual trends were summarized as the followings; water temperature, COD and SS tended to increase from late 1970's, decreased salinity, and increased phosphate from 1991 to 2001 and increased dissolved inorganic nitrogen. Water quality was showed by the input of fresh water same as those of Kyoungin coastal area, Asan coastal area, Choensoo bay, Gunsan coastal and Mokpo coastal area in the Yeoja Bay.

Comparison of nutrient removal efficiency of an infiltration planter and an infiltration trench (침투도랑(IT)과 침투화분(IP)의 영양염류 저감효율 비교분석)

  • Yano, K.A.V.;Geronimo, F.K.F.;Reyes, N.J.D.G.;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.384-391
    • /
    • 2019
  • Nutrients in stormwater runoff have raised concerns regarding water quality degradation in the recent years. Low impact development (LID) technologies are types of nature-based solutions developed to address water quality problems and restore the predevelopment hydrology of a catchment area. Two LID facilities, infiltration trench (IT) and infiltration planter (IP), are known for their high removal rate of nutrients through sedimentation and vegetation. Long-term monitoring was conducted to assess the performance and cite the advantages and disadvantages of utilizing the facilities in nutrient removal. Since a strong ionic bond exists between phosphorus compounds and sediments, reduction of total phosphorus (TP) (more than 76%), in both facilities was associated to the removal of total suspended solids (TSS) (more than 84%). The efficiency of nitrogen in IP is 28% higher than IT. Effective nitrification occurred in IT and particulate forms of nitrogen were removed through sedimentation and media filters. Decrease in ammonium- nitrogen (NH4-N) and nitrite-nitrogen (NO2-N), and increase in nitrate-nitrogen (NO3-N) fraction forms indicated that effective nitrification and denitrification occurred in IP. Hydrologic factors such as rainfall depth and rainfall intensity affected nutrient treatment capabilities of urban stormwater LID facilities The greatest monitored rainfall intensity of 11 mm/hr for IT yielded to 34% and 55% removal efficiencies for TN and TP, respectively, whereas, low rainfall intensities below 5 mm resulted to 100 % removal efficiency. The greatest monitored rainfall intensity for IP was 27 mm/hr, which still resulted to high removal efficiencies of 98% and 97% for TN and TP, respectively. Water quality assessment showed that both facilities were effective in reducing the amount of nutrients; however, IP was found to be more efficient than IT due to its additional provisions for plant uptake and larger storage volume.

Feasibility Study of Wetland-pond Systems for Water Quality Improvement and Agricultural Reuse (습지-연못 연계시스템에 의한 수질개선과 농업적 재이용 타당성 분석)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.344-354
    • /
    • 2004
  • A pilot study was performed from September 2000 to April 2004 to examine the feasibility of the wetland-pond system for the agricultural reuse of reclaimed water. The wetland system was a subsurface flow type, with a hydraulic residence time of 3.5 days, and the subsequent pond was 8 $m^3$ in volume (2 m ${\times}$ 2 m ${\times}$ 2 m) and operated with intermittent-discharge and continuous flow types. The wetland system was effective in treating the sewage; median removal efficiencies of $BOD_5$ and TSS were above 70.0%, with mean effluent concentrations of 27.1 and 16.8 mg $L^{-1}$, respectively, for these constituents. However, they did often exceed the effluent water quality standards of 20 mg $L^{-1}$. Removal of T-N and T-P was relatively less effective and mean effluent concentrations were approximately 103.2 and 7.2 mg $L^{-1}$, respectively. The wetland system demonstrated high removal rate (92 ${\sim}$ 90%) of microorganisms, but effluent concentrations were in the range of 300 ${\sim}$ 16,000 MPN 100 $mL^{-1}$ which is still high for agricultural reuse. The subsequent pond system provided further treatment of the wetland effluent, and especially additional microorganisms removal in addition to wetland-pond system could reduce the mean concentration to 1,000 MPN 100 $mL^{-1}$ from about $10^5$ MPN 100 $mL^{-1}$ of wetland influent. Other parameters in the pond system showed seasonal variation, and the upper layer of the pond water column became remarkably clear immediately after ice melt. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the subsequent pond was effective for further polishing. This study concerned agricultural reuse of reclaimed water using natural systems. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, wetland- pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water in rural area.

Water Quality Improvement with the Application of Filter-feeding Bivalve (Corbicula leana Prime) in a Eutrophic Lake (참재첩을 이용한 부영양호의 수질개선)

  • Kim, Ho-Sub;Park, Jung-Hwan;Kong, Dong-Soo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.332-343
    • /
    • 2004
  • This study was conducted to test a possibility of water quality improvement using a filter-feeding bivalve (Corbicula leana). In mesocosm scale (width ${\times}$ length ${\times}$ depth: 3 m ${\times}$ 3 m ${\times}$ 0.5 m), we investigated the changes of dissolved nutrient and particulate matter including both abiotic and biotic seston. Short term (16 days) mesocosm experiment was conducted in two stages: the first stage for 8 days and consecutive 8 days of the second stage. Both treatment and control mesocosm were switched over by translocating mussels from the treatment mesocosm to the control, at 8th days since the start of the experiment. This design made it possible to compare mussel effect on the water quality change more clearly. The high mortality of mussel was observed in the treatment of the first stage, but it decreased rapidly and stabilized on the 8th day to less than< 4 ind $day^{-1}$. Chl. a concentration in the treatment mesocosm of the first and second stage decreased to 71 and 88% of initial concentration, respectively, and suspended solids decreased to 70 and 77%. At those times, average filtering rate were 0.46 and 0.61 mL AFDW $mg^{-1}$ $hr^{-1}$, respectively. Both $NH_3-N$ and dissolved total phosphorus (DTP) concentrations increased with the mussel mortality. $NH_3-N$ concentration was positively correlated with the mussel mortality, while DTP concentration showed negative correlation with it. After translocating mussel from the treatment to the control, $NH_3-N$ concentration significantly increased compared with that of initial control. Although DTP concentration also increased, there was no significant difference relative to that of initial control. These results suggest that application of this filter-feeding bivalve in a eutrophic reservoir could be a potential tool to improve water quality if mussels could acclimatize successfully in early stage of the introduction.

A Study of Fish Community on Up and Downstream of Hwabuk Dam Under Construction in the Upper Wie Stream. (위천 상류에 건설 중인 화북댐 상 하류 어류군집에 관한 연구)

  • Seo, Jin-Won;Kim, Hee-Sung
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.260-269
    • /
    • 2009
  • Hwabuk Dam has been under construction to reduce flood damage in Nakdong River watershed and to supply stable water for middle area of Gyeongbuk Province. Therefore, fish investigation in up and downstream of the dam was conducted from 2004 to 2008 in order to determine any negative effect on fish community due to dam construction and to use as fundamental data for conserving species diversity and maintaining stream health. According to data analysis on water quality, temperature, dissolved oxygen, pH, suspended solids, and total E-coli had seasonal variation, but they did not significantly differ in sites. However, biological and chemical oxygen demand, chlorophyll-a, nitrogen, and phosphorus representing organic matter and nutrient concentration were higher in upper site and decreased to lower site so that they differed by site. Concentration of arsenic among the heavy metals was less than 0.05 mg $L^{-1}$, which is regulated for protection of human health in water quality standard, except for 0.092 mg $L^{-1}$ in June 2005. During the study period, the total number of fish caught from the 6 sites was 10,263 representing 7 families 19 species. Among them, dominant and subdominant species were Korean chub (Zacco koreanus, 62.5%) and Chinese minnow (Rhynchocypris oxycephalus, 10.6%) which inhabit mostly in mid and upper streams, Korea. Among the 19 species, Korean endemic species were 9 species (47.4%) including Korean slender gudgeon (Squalidus gracilis majimae), Korean dark sleeper (Odontobutis platycephala), and Korean shiner (Coreoleuciscus splendidus). There was several individuals of the $1^{st}$-class endangered species, Naktong nose loach (Koreocobitis nahtongensis), caught in 2005${\sim}$2007, and no introduced species of fish was found in entire sampling period. According to result of community analysis, dominance index decreased toward lower site, but diversity and richness indices increased toward lower site. The equation of length-weight relationship on the dominant species was TW=0.000003$(TL)^{3.2603}$. The parameter b in the equation was greater than 3.0 indicating good nutritional condition in the populations. Compared to populations of Korean chub in other streams, the population in Hwabuk Dam watershed had higher mean of condition factor by size indicating better growth rate. With fish fauna and multi-metric health assessment model in each sampling attempt, index of biotic integrity (IBI) was evaluated and it resulted mostly in good (26${\sim}$35) and excellent (36${\sim}$40) condition in all sites, and the mean of IBI was the highest in site 5. The results indicate that it is very important to study not only environmental impact assessment with fish composition but also stream health assessment in order to conserve healthy aquatic ecosystem.

Characterizations of Water Quality, and Potential Relationships of Nitrogen Components and Microbes in the Mulgol Pond on Dokdo, Korea (독도 물골의 수질 특성 및 질소화합물과 미생물간의 잠재적 관계)

  • WOO, SANG YOON;LEE, HYEON BEEN;JEONG, DONG HYUK;AN, JE BAK;YOUN, JIN SUK;PAK, JAE-HONG;PARK, JONG SOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.124-134
    • /
    • 2021
  • Water in the Mulgol pond on Dokdo (island), Korea, was historically used for drinking water, but now it has been no longer used for this purpose due to regionally low water quality. Since 2007, this pond has been covered with a metal lid to protect from pollutants of seabirds, indicating limited light penetration into the Mulgol pond. Here, we investigated water quality in the pond and potential relationships of nitrogen components and microbes in May, June, August, and November 2020. The source salinity ranged from 1.39 to 1.57 psu. Suspended solids (0.8~5.1 mg L-1) and chlorophyll-a (<0.01~0.49 ㎍ L-1) remained low. The concentration of dissolved inorganic nitrogen (DIN) was between 35.9 and 47.2 mg L-1. Thus, water in the Mulgol pond proves to be brackish water with low chlorophyll-a and high nutrients. This unique environment may be established by limited light intensity, sea fog (or seawater), and fecal pellets from many seabirds. Although the light source (800~8000 lux) was exposed to the four subsamples, chlorophyll-a concentrations were below <0.5 ㎍ L-1 during the incubation periods. This result suggests that the biomass of phytoplankton does not increase along with an increase in light intensity. Furthermore, the content of nitrate constituted more than 90% of DIN, and a significant negative correlation between nitrate concentration and bacterial abundance was shown in May and June 2020 during the light exposure experiments (R=-0.762, p<0.05). Thus, it is possible that bacteria may be a significant agent to reduce nitrate concentration in the Mulgol pond, the relationship between nitrate concentration and bacterial abundance may vary seasonally.

A Study on the Dynamics of Dissolved Organic Matter Associated with Ambient Biophysicochemical Factors in the Sediment Control Dam (Lake Youngju) (영주댐 유사조절지 상류의 용존유기물 (Dissolved Organic Matter) 특성과 물리·화학 및 생물학적 환경 요인과의 연관성 연구)

  • Oh, Hye-Ji;Kim, Dokyun;Choi, Jisoo;Chae, Yeon-Ji;Oh, Jong Min;Shin, Kyung-Hoon;Choi, Kwangsoon;Kim, Dong-Kyun;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.346-362
    • /
    • 2021
  • A sediment control dam is an artificial structure built to prolong sedimentation in the main dam by reducing the inflow of suspended solids. These dams can affect changes in dissolved organic matter (DOM) in the water body by changing the river flow regime. The main DOM component for Yeongju Dam sediment control of the Naeseongcheon River was analyzed through 3D excitation-emission matrix (EEM) and parallel factor (PARAFAC) analyses. As a result, four humic-like components (C1~C3, C5), and three proteins, tryptophan-like components (C2, C6~C7) were detected. Among DOM components, humic-like components (autochthonous: C1, allochthonous: C2~C3) were found to be dominant during the sampling period. The total amount of DOM components and the composition ratio of each component did not show a difference for each depth according to the amount of available light (100%, 12%, and 1%). Throughout the study period, the allochthonous organic matter was continuously decomposing and converting into autochthonous organic matter; the DOM indices (fluorescence index, humification index, and freshness index) indicated the dominance of autochthonous organic matter in the river. Considering the relative abundance of cyanobacteria and that the number of bacteria cells and rotifers increased as autochthonous organic matter increased, it was suggested that the algal bloom and consequent activation of the microbial food web was affected by the composition of DOM in the water body. Research on DOM characteristics is important not only for water quality management but also for understanding the cycling of matter through microbial food web activity.

Change of Water Quality and Growth of Leiocassis ussuriensis Cultivated in a Biofloc System using Bacillus subtilis (Bacillus subtilis을 활용한 바이오플락 시스템에서 사육한 대농갱이(Leiocassis ussuriensis)의 성장 및 사육수 수질 변화)

  • Kyu Seok, Cho;Jong Ho, Park;Han Seung, Kang
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.196-204
    • /
    • 2022
  • This study observed changes in survival, growth performance and water quality for 90 days to confirm the possibility of Leiocassis ussuriensis farming using Biofloc technology (BFT) using Bacillus subtilis. Feed and molasses were added to the experimental tank to produce BFT water before planting the experiment, and B. subtilis was inoculated to stabilize the water quality for 40 days. The survival rate of the experimental fish was 92.7±3.2% in the control group and 95.8±3.3% in the BFT group. The Weight gain (WG) was 118.1±9.0% of the control and 197.7±15.6% of the BFT, and the Specific growth rate (SGR) was 0.87±0.5% of the control and 1.21±0.06% of the BFT. As for the feed efficiency, the control was 43.7±2.6% and the BFT was measured at 70.1±4.1%, indicating that the feed efficiency of the BFT was higher. As a result of measuring the water quality change during the experimental period, pH was reduced in both the control and the BFT, and Mixed Liquor Suspended Solids (MLSS) did not show any change in the control, but the BFT showed a significant increase at 90 days. NH4+-N and NO2--N showed a significant increase from the 30 days of the experiment in the control, but showed no change in the BFT. In conclusion, as a result of applying the BFT system using B. subtilis to the process of cultivating Leiocassis ussuriensis, the water quality tended to stabilize, and the growth rate and feed efficiency were found to be higher than those of the control, confirmiWng that it had a positive effect.

Investigation on the water quality challenges and benefits of buffer zone application to Yongdam reservoir, Republic of Korea (용담호의 홍수터 적용을 위한 문제점 및 이점 조사 연구)

  • Franz Kevin Geronimo;Hyeseon Choi;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.274-283
    • /
    • 2023
  • Buffer zones, an example of nature-based solutions, offer wide range of environmental, social and economic benefits due to their multifunctionality when applied to watershed areas promoting blue-green connectivity. This study evaluated the effects of buffer zone application to the water quality of Yongdam reservoir tributaries. Particularly, the challenges and improvement of the buffer zone design were identified and suggested, respectively. Water and soil samples were collected from a total of six sites in Yongdam reservoir from September 2021 to April 2022. Water quality analyses revealed that among the sites monitored, downstream of Sangjeonmyeon Galhyeonri (SG_W_D2) was found to have the highest concentration for water quality parameters turbidity, total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN). This finding was attributed to the algal bloom observed during the sampling conducted in September and October 2021. It was found through the soil analyses that high TN and TP concentrations were also observed in all the agricultural land uses implying that nutrient accumulation in agricultural areas are high. Highest TN concentration was found in the agricultural area of Jeongcheonmyeon Wolpyeongri (JW_S_A) followed by Jucheonmyeon Sinyangri (JS_S_A) while the lowest TN concentration was found in the original soil of Sangjeonmyeon Galhyeonri (SG_S_O). Among the types of buffer zones identified in this study, Type II-A, Type II-B and Type III were found to have blue-green connectivity. However, initially, blue-green connectivity in these buffer zone types were not considered leading to poor design and poor performance. As such, improvement in the design considering blue-green network and renovation must be considered to optimize the performance of these buffer zones. The findings in this study is useful for designing buffer zones in the future.

The Variation of the Dissolved Inorganic Nutrients in the Costal Area of Gunsan, Yellow Sea from 2001 to 2010 (서해 군산 연안의 2001년부터 2010년까지의 용존성무기영양염류의 변동)

  • Heo, Seung;Kweon, Jung-Ro;Park, Jong-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.357-365
    • /
    • 2011
  • The variation of the dissolved inorganic nutrients were investigated four times per year in the costal area of Gunsan, Yellow Sea from 2001 to 2010. Water samples were collected at 10 stations and phsico-chemical parameters were analyzed including water temperature, salinity, suspended solids, dissolved oxygen, chemical oxygen demand, chlorophyll a and dissolved inorganic nutrients. The average of dissolved inorganic nitrogen(DIN) for ten years at Gunsan area showed similar concentration between surface and bottom. The average of DIN at surface was 0.421mg/L (0.198~0.846mg/L) and bottom was 0.344mg/L(0.148~0.717mg/L). The highest value of annual average of DIN at surface was 0.846mg/L in 2002 and the lowest value was 0.198mg/L in 2010. The percentage of ammonia, nitrite and nitrate for the average DIN of 10 years showed 27%, 3% and 70% which showed most of DIN was nitrate. Dissolved inorganic phosphate(DIP) for ten years at Gunsan area showed similar concentration between surface and bottom and DIP was decreasing from 2003 to 2010. The average of DIP of 10 years was 0.024mg/L and annual average 0.021mg/L in 2008, 0.007mg/L in 2009 and 0.008mg/L in 2010 which showed decreasing pattern from 2007 to 2010. The average of DIN/DIP ratio from 2002 to 2010 was 6.0(3.2~10.1) at surface and 4.6(2.6~7.0) at bottom. The average value of dissolved inorganic silicate from 2004 to 2010 showed 0.372mg/L at surface layer and 0.352mg/L at bottom layer and was on decreased from 2006 to 2010. The Spearman's correlation analysis was carried out to knowrelation among the salinity and dissolved inorganic nutrients at the surface and bottom layer. The correlation factor of DIN was -0.72, DIP was -0.46 and dissolved inorganic silicate was -0.63 at surface layer and DIN was -0.70, DIP was -0.44 and dissolved inorganic silicate was -0.57 at bottom layer. The dissolved inorganic nutrients at the nearshore of Gunsan was affected from the freshwater discharge of Geum river. Especially, a lot of DIN flowed into the nearshore of Gunsan from Guem river. The concentration of dissolved inorganic nutrients at Gunsan showed high at station 1, 2 and 3 and there was a little concentration differences according to the cruise time. The concentration of dissolved inorganic nutrients showed high value at the station 1, 2, 3 which exist nearshore of Gunsan city and it means these stations mainly affected by Geum river and Gunsan city. The annual average of dissolved inorganic nutrients showed gradually decreased from 2003 to 2010 and we need more research on this conditions.