• Title/Summary/Keyword: survival data

Search Result 2,111, Processing Time 0.026 seconds

Predictive Modeling for Microbial Risk Assessment (MRA) from the Literature Experimental Data

  • Bahk, Gyung-Jin
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.137-142
    • /
    • 2009
  • One of the most important aspects of conducting this microbial risk assessment (MRA) is determining the model in microbial behaviors in food systems. However, to fully these modeling, large expenditures or newly laboratory experiments will be spent to do it. To overcome these problems, it has to be considered to develop the new strategies that can be used data in the published literatures. This study is to show whether or not the data set from the published experimental data has more value for modeling for MRA. To illustrate this suggestion, as example of data set, 4 published Salmonella survival in Cheddar cheese reports were used. Finally, using the GInaFiT tool, survival was modeled by nonlinear polynomial regression model describing the effect of temperature on Weibull model parameters. This model used data in the literatures is useful in describing behavior of Salmonella during different time and temperature conditions of cheese ripening.

Discount Survival Models for No Covariate Case

  • Joo Yong Shim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.491-496
    • /
    • 1997
  • For the survival data analysis of no covariate the discount survival model is proposed to estimate the time-varying hazard rate and the survival function recursively. In comparison with the covariate case it provide the distributionally explicit evolution of hazard rate between time intervals under the assumption of a conjugate gamma distribution. Also forecasting of the hazard rate in the next time interval is suggested, which leads to the forcecasted survival function.

  • PDF

Estimation of Bivariate Survival Function for Possibly Censored Data

  • Park Hyo-Il;Na Jong-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.783-795
    • /
    • 2005
  • We consider to obtain an estimate of bivariate survival function for the right censored data with the assumption that the two components of censoring vector are independent. The estimate is derived from an ad hoc approach based on the representation of survival function. Then the resulting estimate can be considered as an extension of the Susarla- Van Ryzin estimate to the bivariate data. Also we show the consistency and weak convergence for the proposed estimate. Finally we compare our estimate with Dabrowska's estimate with an example and discuss some properties of our estimate with brief comment on the extension to the multivariate case.

Random Effects Models for Multivariate Survival Data: Hierarchical-Likelihood Approach

  • Ha Il Do;Lee Youngjo;Song Jae-Kee
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.193-200
    • /
    • 2000
  • Modelling the dependence via random effects in censored multivariate survival data has recently received considerable attention in the biomedical literature. The random effects models model not only the conditional survival times but also the conditional hazard rate. Systematic likelihood inference for the models with random effects is possible using Lee and Nelder's (1996) hierarchical-likelihood (h-likelihood). The purpose of this presentation is to introduce Ha et al.'s (2000a,b) inferential methods for the random effects models via the h-likelihood, which provide a conceptually simple, numerically efficient and reliable inferential procedures.

  • PDF

Generating censored data from Cox proportional hazards models (Cox 비례위험모형을 따르는 중도절단자료 생성)

  • Kim, Ji-Hyun;Kim, Bongseong
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.761-769
    • /
    • 2018
  • Simulations are important for survival analyses that deal with censored data. Cox models are widely used in survival analyses, therefore, we investigate how to generate censored data that can simulate the Cox model. Bender et al. (Statistics in Medicine, 24, 1713-1723, 2005) provided a parametric method for generating survival times, but we need to generate censoring times as well as survival times to simulate the censored data. In addition to the parametric method for generating censored data, a nonparametric method is also proposed and applied to a real data set.

Survival Analysis and Prognostic Factors for Colorectal Cancer Patients in Malaysia

  • Hassan, Muhammad Radzi Abu;Suan, Mohd Azri Mohd;Soelar, Shahrul Aiman;Mohammed, Noor Syahireen;Ismail, Ibtisam;Ahmad, Faizah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3575-3581
    • /
    • 2016
  • Background: Cancer survival analysis is an essential indicator for effective early detection and improvements in cancer treatment. This study was undertaken to document colorectal cancer survival and associated prognostic factors in Malaysians. Materials and Methods: All data were retrieved from the National Cancer Patient Registry-Colorectal Cancer. Only cases with confirmed diagnosis through histology between the year 2008 and 2009 were included. Retrieved data include socio-demographic information, pathological features and treatment received. Survival curves were plotted using the Kaplan-Meier method. Univariate analysis of all variables was then made using the Log-rank test. All significant factors that influenced survival of patients were further analysed in a multivariate analysis using Cox' regression. Results: Total of 1,214 patients were included in the study. The overall 3- and 5-year survival rates were 59.1% and 48.7%, respectively. Patients with localized tumours had better prognosis compared to those with advanced stage cancer. In univariate analysis, staging at diagnosis (p<0.001), primary tumour size (p<0.001), involvement of lymph nodes (p<0.001) and treatment modalities (p=0.001) were found to be predictors of survival. None of the socio-demographic characteristics were found to exert any influence. In Cox regression analysis, staging at diagnosis (p<0.001), primary tumour size (p<0.001), involvement of lymph nodes (p<0.001) and treatment modalities (p<0.001) were determined as independent prognostic factors of survival after adjusted for age, gender and ethnicity. Conclusions: The overall survival rate for colorectal cancer patients in Malaysia is similar to those in other Asian countries, with staging at diagnosis, primary tumor size, involvement of lymph node and treatment modalities having significant effects. More efforts are needed to improve national survival rates in future.

Racial and Social Economic Factors Impact on the Cause Specific Survival of Pancreatic Cancer: A SEER Survey

  • Cheung, Rex
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.159-163
    • /
    • 2013
  • Background: This study used Surveillance, Epidemiology and End Results (SEER) pancreatic cancer data to identify predictive models and potential socio-economic disparities in pancreatic cancer outcome. Materials and Methods: For risk modeling, Kaplan Meier method was used for cause specific survival analysis. The Kolmogorov-Smirnov's test was used to compare survival curves. The Cox proportional hazard method was applied for multivariate analysis. The area under the ROC curve was computed for predictors of absolute risk of death, optimized to improve efficiency. Results: This study included 58,747 patients. The mean follow up time (S.D.) was 7.6 (10.6) months. SEER stage and grade were strongly predictive univariates. Sex, race, and three socio-economic factors (county level family income, rural-urban residence status, and county level education attainment) were independent multivariate predictors. Racial and socio-economic factors were associated with about 2% difference in absolute cause specific survival. Conclusions: This study s found significant effects of socio-economic factors on pancreas cancer outcome. These data may generate hypotheses for trials to eliminate these outcome disparities.

A comparison of the statistical methods for testing the equality of crossing survival functions (교차하는 두 생존함수의 동일성 검정법에 관한 비교연구)

  • Lee, Youn Ju;Lee, Jae Won
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.569-580
    • /
    • 2015
  • Log-rank is widely used for testing equality of two survival functions, and this method is efficient only under the proportional hazard assumption. However, crossing survival functions are common in practice. Therefore, many approaches have been suggested to test equality of them. This study considered several methods; Renyi type test, modified Kolmogorov-Smirnov and Cramer-von Mises test, and weighted Log-rank test, which can be applied when the survival functions cross, and simulated power of those methods. Based on the simulation results, we provide the useful information to choose a suitable approach in a given situation.

Estimation of Survival Function and Median Survival Time in Interval-Censored Data (구간중도절단자료에서 생존함수와 중간생존시간에 대한 추정)

  • Yun, Eun-Young;Kim, Choong-Rak
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.521-531
    • /
    • 2010
  • Interval-censored observations are common in medical and epidemiologic studies; however, limited studies exist due to the complexity and special structure of interval-censoring. This paper introduces the imputation method and the self consistency method in the interval-censored data. We propose a new method of generating random numbers under an interval-censoring set-up. Through simulation studies we compare two methods under various simulation schemes in the sense of the mean squared error for estimating the median survival time and the mean integrated squared error for estimating the survival function. Under a moderate censoring percentage, the mean imputation method showed a better performance than the self-consistency method in estimating the median survival time and the survival function.

Development of Program for Relative Biological Effectiveness (RBE) Analysis of Particle Beam Therapy

  • Chung, Yoonsun;Ahn, Sang Hee;Choi, Changhoon;Park, Sohee
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • Relative biological effectiveness (RBE) of particle beam needs to be evaluated at particle beam therapy centers before the clinical application of the particle beam. However, since RBE analysis is implemented manually, it is useful to have a tool that can easily and effectively handle the data of experiments to generate cell survival curve and to analyze RBE simultaneously. In this work, the development of a program for RBE analysis of particle beam therapy was presented. This RBE analysis program was developed to include two parts; fitting the cell survival curves to linear-quadratic model and calculating the RBE values at a certain endpoint using fitting results. This program was also developed to simultaneously compare and analyze the template results that stored experiment data with photon and particle beam irradiations. The results of the cell survival curve obtained by each irradiation can be analyzed by the user on a desired data after reading the template stored in the easy-to-use excel file. The analysis results include the cell survival curves with error range, which are appeared in the screen and the ${\alpha}$ and ${\beta}$ parameters of linear-quadratic model with 95% confidence intervals, RBE values, and $R^2$ values to evaluate goodness-of-fit of survival curves to model, which are stored in a text cvs file. This software can generate cell survival curve, fit to model, and calculate RBE all at once with raw experiment data, so it helps users to save time for data handling and to reduce the possibility of making error on analysis. As a coming plan, we will create a user-friendly graphical user interface to present the results more intuitively.