• Title/Summary/Keyword: surveys and exploration

Search Result 273, Processing Time 0.02 seconds

Development of Digital Streamer System for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 디지털 스트리머 시스템 개발)

  • Shin, Jungkyun;Ha, Jiho;Yoon, Seongwoong;Im, Taesung;Im, Gwansung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.129-139
    • /
    • 2022
  • Analog-based streamers for ultra-high-resolution seismic surveys are capable of additional noise ingress in water, but the specifications cannot be expanded through interconnections. Foreign-produced digital streamers have been introduced and used primarily at domestic research institutes; however, the cost is high and smooth maintenance is challenging. This study investigates the localization of ultra-high-resolution digital streamers capable of high-resolution imaging of a geological structure. A digital streamer capable of 24-bit, 10 kHz digital sampling of up to 64 channel data was developed through research and development. Various quantitative specifications of the system were designed and developed close to the benchmark model, Geometrics' GeoEel streamer, and the number of modules that make up the system was drastically reduced, reducing development costs and making it easier to use. The field applicability of the developed streamer system was evaluated in an in situ experiment conducted in the waters around the Port of Yeong-il Bay in Pohang in April 2022.

Seismic wave propagation through surface basalts - implications for coal seismic surveys (지표 현무암을 통해 전파하는 탄성파의 거동 - 석탄 탄성파탐사에 적용)

  • Sun, Weijia;Zhou, Binzhong;Hatherly, Peter;Fu, Li-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.

An integrated airborne gravity survey of an offshore area near the northern Noto Peninsula, Japan (일본 노토 반도 북쪽 연안의 복합 항공 중력탐사)

  • Komazawa, Masao;Okuma, Shigeo;Segawa, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.88-95
    • /
    • 2010
  • An airborne gravity survey using a helicopter was carried out in October 2008, offshore along the northern Noto Peninsula, to understand the shallow and regional underground structure. Eleven flight lines, including three tie lines, were arranged at 2 km spacing within 20 km of the coast. The total length of the flight lines was ~700 km. The Bouguer anomalies computed from the airborne gravimetry are consistent with those computed from land and shipborne gravimetry, which gradually decrease in the offshore direction. So, the accuracy of the airborne system is considered to be adequate. A local gravity low in Wajima Bay, which was already known from seafloor gravimetry, was also observed. This suggests that the airborne system has a structural resolution of ~2 km. Reduction of gravity data to a common datum was conducted by compiling the three kinds of gravity data, from airborne, shipborne, and land surveys. In the present study, we have used a solid angle numerical integration method and an iteration method. We finally calculated the gravity anomalies at 300 m above sea level. We needed to add corrections of 2.5 mGals in order to compile the airborne and shipborne gravity data smoothly, so the accuracy of the Bouguer anomaly map is considered to be nearly 2 mGal on the whole, and 5 mGals at worst in limited or local areas.

Exploration of underground utilities using method predicting an anomaly (이상대 판정기법을 활용한 지하매설물 탐사)

  • Ryu, Hee-Hwan;Kim, Kyoung-Yul;Lee, Kang-Ryel;Lee, Dae-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • Rapid urbanization and industrialization have caused increased demand for underground structures such as cable, and other utility tunnels. Recently, it has become very difficult to construct new underground structures in downtown areas because of civil complaints, and engineering problems related to insufficient information about existing underground structures, cable tunnels in particular. This lack of information about the location and direction-of-travel of cable tunnels is causing many problems. To solve these problems, this study was focused on the use of geophysical exploration of the ground in a way that is theoretically, different from previous electrical resistivity surveys. An electric field analysis was performed on the ground with cable tunnels using Gauss' law and the Laplace equation. The electrical resistivity equation, which is a function of the cable tunnel direction, the cable tunnel location, and the electrical conductivity of the cable tunnel, can be obtained through electrical field analysis. A field test was performed for the verification of this theoretical approach. A field test results provided meaningful data.

Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan (접지된 전기 송신원을 이용한 일본 북동부 만다이 산에서의 시간영역 항공 전자탐사)

  • Mogi, Toru;Kusunoki, Ken'ichirou;Kaieda, Hideshi;Ito, Hisatoshi;Jomori, Akira;Jomori, Nobuhide;Yuuki, Youichi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Airborne electromagnetics (AEM) is a useful tool for investigating volcanic structures because it can survey large and inaccessible areas. Disadvantages include lower accuracy and limited depth of investigation. The Grounded Electrical Source Airborne Transient Electromagnetic(GREATEM)survey system was developed to increase the depth of investigation possible using AEM. The method was tested in a survey at Mount Bandai in north-eastern Japan. Mount Bandai is an andesitic stratovolcano that rises 1819m above sea level. An eruption in July 1888 left a hoof-shaped collapsed wall in its northern crater and avalanche debris at its base. Previous surveys of Mount Bandai allow for comparisons of data on its structure and collapse mechanism as obtained by GREATEM and other geophysical methods. The results show resistive structures in recent volcanic cones and conductive structures in the collapsed-crater area. Conductive areas around the collapsed wall correspond to an alteration zone resulting from hydrothermal activity, supporting the contention that a major cause of the collapse associated with the 1888 eruption was hydrothermal alteration that structurally weakened the interior of the volcanic edifice.

Discovery of the Dmitri Donskoi ship near Ulleung Island(East Sea of Korea), using geophysical surveys (물리탐사기술을 이용한 침몰선 Dmitri Donskoi호 탐사)

  • Yoo, Hai-Soo;Kim, Su-Jeong;Park, Dong-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.104-111
    • /
    • 2005
  • Dmitri Donskoi, the Russian cruiser launched in 1883, is known to have sunk near Ulleung Island (East Sea, Korea) on May 29, 1905, while it was participating in the Russo-Japanese War. In order to find this ship, information about its possible location was obtained from Russian and Japanese maritime historical records. The supposed location of the ship was identified, and we conducted a five-year geophysical survey from 1999 to 2003. A reconnaissance three-dimensional topographic survey of the sea floor was carried out using multi-beam echo sounder, marine magnetometer, and side-scan sonar. An anomalous body identified through the initial reconnaissance survey was identified by a detailed survey using a remotely operated vehicle, deep-sea camera, and the mini-submarine Pathfinder. Interpretation of the acquired data showed that the ship is hanging on the side of a channel, at the bottom of the sea 400 m below sea level. The location is about 2 km from Port Jeodong, Uleung Island. We discovered 152 mm naval guns and other war materiel still attached to the hull of the ship. In addition, the remnants of the steering gear and other machinery that were burnt during the final action were found near the hull. Strong magnetic fields, resulting from the presence of volcanic rocks in the survey area, affected the resolution of the magnetic data gathered; as a result, we could not locate the ship reliably using the magnetic method. Severe sea floor topography in the gully around the hull gave rise to diffuse reflections in the side-scan sonar data, and this prevented us from identifying the anomalous body with the side-scan sonar technique. However, the sea-floor image obtained from the multi-bean echo sounder was very useful in verifying the location of the ship.

Deep-learning-based GPR Data Interpretation Technique for Detecting Cavities in Urban Roads (도심지 도로 지하공동 탐지를 위한 딥러닝 기반 GPR 자료 해석 기법)

  • Byunghoon, Choi;Sukjoon, Pyun;Woochang, Choi;Churl-hyun, Jo;Jinsung, Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.189-200
    • /
    • 2022
  • Ground subsidence on urban roads is a social issue that can lead to human and property damages. Therefore, it is crucial to detect underground cavities in advance and repair them. Underground cavity detection is mainly performed using ground penetrating radar (GPR) surveys. This process is time-consuming, as a massive amount of GPR data needs to be interpreted, and the results vary depending on the skills and subjectivity of experts. To address these problems, researchers have studied automation and quantification techniques for GPR data interpretation, and recent studies have focused on deep learning-based interpretation techniques. In this study, we described a hyperbolic event detection process based on deep learning for GPR data interpretation. To demonstrate this process, we implemented a series of algorithms introduced in the preexisting research step by step. First, a deep learning-based YOLOv3 object detection model was applied to automatically detect hyperbolic signals. Subsequently, only hyperbolic signals were extracted using the column-connection clustering (C3) algorithm. Finally, the horizontal locations of the underground cavities were determined using regression analysis. The hyperbolic event detection using the YOLOv3 object detection technique achieved 84% precision and a recall score of 92% based on AP50. The predicted horizontal locations of the four underground cavities were approximately 0.12 ~ 0.36 m away from their actual locations. Thus, we confirmed that the existing deep learning-based interpretation technique is reliable with regard to detecting the hyperbolic patterns indicating underground cavities.

Improvement of Underground Cavity and Structure Detection Performance Through Machine Learning-based Diffraction Separation of GPR Data (기계학습 기반 회절파 분리 적용을 통한 GPR 탐사 자료의 도로 하부 공동 및 구조물 탐지 성능 향상)

  • Sooyoon Kim;Joongmoo Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.171-184
    • /
    • 2023
  • Machine learning (ML)-based cavity detection using a large amount of survey data obtained from vehicle-mounted ground penetrating radar (GPR) has been actively studied to identify underground cavities. However, only simple image processing techniques have been used for preprocessing the ML input, and many conventional seismic and GPR data processing techniques, which have been used for decades, have not been fully exploited. In this study, based on the idea that a cavity can be identified using diffraction, we applied ML-based diffraction separation to GPR data to increase the accuracy of cavity detection using the YOLO v5 model. The original ML-based seismic diffraction separation technique was modified, and the separated diffraction image was used as the input to train the cavity detection model. The performance of the proposed method was verified using public GPR data released by the Seoul Metropolitan Government. Underground cavities and objects were more accurately detected using separated diffraction images. In the future, the proposed method can be useful in various fields in which GPR surveys are used.

Monitoring of Reinjected Leachate in a Landfill using Electrical Resistivity Survey (전기비저항 탐사를 이용한 매립지의 재주입 침출수 모니터링)

  • Chul Hee Lee;Su In Jeon;Young-Kyu Kim;Won-Ki Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.3
    • /
    • pp.159-170
    • /
    • 2024
  • The bioreactor method, in which leachate is reinjected into a landfill for rapid decomposition and stabilization of buried waste, is being applied and tested at many landfills because of its numerous advantages. To apply the bioreactor method to a landfill successfully, it is very important to understand the behavioral characteristics of the injected leachate. In this study, electrical resistivity monitoring was performed to estimate the behavior of a landfill leachate in Korea where the bioreactor method was applied. For the electrical resistivity monitoring, a baseline survey was conducted in August 2013 before the leachate was injected, and time-lapse monitoring surveys were conducted four times after injection. The electrical resistivity monitoring results revealed reductions in electrical resistivity in the landfill attributable to the injected leachate, and the change in its characteristics over time was confirmed. In addition, by newly defining the electrical resistivity change ratio and applying it in this study, the spatial distribution and behavior of the leachate over time were effectively identified. More research on optimization of data acquisition and integrated monitoring methods using various techniques should be conducted in the near future.

2 Dimensional TSP Modeling Using Finite Element Method (유한 요소법을 이용한 2차원 TSP 모델링)

  • Lee, Hong;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.13-22
    • /
    • 2003
  • TSP (Tunnel Seismic Profiling) survey is a technique for imaging and characterizing geological structures ahead of a tunnel face. The seismic modeling algorithm and the synthetic data could be helpful for TSP surveys. However, there is few algorithm to describe the propagation of the elastic waves around the tunnel. In this study, existing 2-dimensional seismic modeling algorithm using finite element method was modified to make a suitable algorithm for TSP modeling. Using this algorithm, TSP modeling was practiced in some models. And the synthetic data was analyzed to examine the propagation characteristics of the elastic waves. First of all, the modeling for the homogeneous tunnel model was practiced to examine the propagation characteristics of the direct waves in the vicinity of the tunnel. And the algorithm was applied to some models having reflector which is perpendicular or parallel to the excavation direction. From these, the propagation characteristics of the reflected waves were examined. Furthermore, two source-receiver arrays were used in respective models to investigate the properties of the two arrays. These modeling algorithm and synthetic data could be helpful in interpreting TSP survey data, developing inversion algorithm and designing new source-receiver arrays.