• 제목/요약/키워드: surveys and exploration

Search Result 275, Processing Time 0.029 seconds

Feasibility of 3D Dipole-Dipole Electrical Resistivity Method to a Vein-Type Ore Deposit (국내 맥상광체조사를 위한 3차원 쌍극자-쌍극자 전기비저항 탐사의 적용성 분석)

  • Min, Dong-Joo;Jung, Hyun-Key;Lee, Hyo-Sun;Park, Sam-Gyu;Lee, Ho-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.268-277
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore deposit survey in literature. Geophysical surveys have been applied to the investigation of both metallic and non-metallic ore deposit. For metallic ore-deposit survey, the 2D electrical resistivity method has been popularly used, because metallic mineral deposits are generally more conductive than surrounding media. However, geological structures are 3D rather than 2D structures, which may lead to misinterpretation in 2D inversion section. In this study, 3D effects are examined for several 3D structures such as a width-varying dyke model and a wedge-shaped model. We also investigate the effects of the direction of survey line. Numerical results show that the width-varying dyke model yields some low resistivity zone in the deep part, which is independent of real ore-body location. For the wedge-shaped model, even though the survey line is located apart from the ore body, the 2D inversion section still shows low resistivity zone in the deep part. When the survey line is not perpendicular to the strike of the ore body, the low resistivity zone is slightly broader but shallower than that obtained along the survey line perpendicular to the strike. For the survey lines that have an angle smaller than $45^{\circ}$ with the strike of the ore body, the inversion results are totally distorted. From these results, we conclude that 2-D survey and interpretation can lead to misinterpretation of subsurface structures, which may be linked to economical loss. Eventually, we recommend to apply 3-D rather than 2-D electrical resistivity survey for ore-deposit survey.

Time-lapse Resistivity Investigations for Imaging Subsurface Grout during Ground Stabilization

  • Farooq, Muhammad;Park, Sam-Gyu;Kim, Jung-Ho;Song, Young-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.241-244
    • /
    • 2007
  • Cement-grouts are injected into limestone cavities beneath the road in the project area, in order to improve strength and reduce permeability; the extent to which grout has penetrated in cavities need to be monitored in order to determined effectiveness of cement-grout. Geophysical approaches, offer great potential for monitoring the grout injection process in a fast and cost-effective way as well as showing whether the grout has successfully achieved the target. This paper presents the ability of surface electrical resistivity to investigate the verification of the grout placement. In order to image the cement-grout, time-lapse surface electrical resistivity surveys were conducted to compare electrical resistivity images before and after injection. Cement-grout was imaged as anomalies exhibiting low resistivity than the surrounding rocks. In accordance with field monitoring, laboratory study was also designed to monitor the resistivity changes of cement-grout specimens with time-lapse. Time-lapse laboratory measurements indicated that electrical methods are good tool to identify the grouted zone. Pre-and post grouting electrical images showed significant changes in subsurface resistivity at grouted zone. The study showed that electrical resistivity imaging technology can be a useful tool for detecting and evaluating changes in subsurface resistivity due to the injection of the grout.

  • PDF

Geoelectrical Structure of the Kyongsang Basin from Magnetotelluric Sounding

  • Lee, Choon-Ki;Lee, Heui-Soon;Kwon, Byung-Doo;Cho, In-Ky;Oh, Seok-Hoon;Song, Yoon-ho;Lee, Tae-Jong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.273-286
    • /
    • 2006
  • The Kyongsang Basin is the most representative Cretaceous basin in the Korean Peninsula where extensive crustal deformation and non-marine sedimentation took place in the early Cretaceous period. The lithology of the basement of the basin and adjacent areas is comprised of mainly Precambrian gneiss complex and Mesozoic granite intrusions. We have carried out magnetotelluric (MT) surveys to investigate the deep geoelectric structure around the Kyongsang Basin. The MT data were collected in the frequency range from 0.00042 to 320 Hz at 24 sites along a profile across the northern part of Kyongsang Basin. The results of MT inversion show that the thickness of sediments is estimated about 3 km to 9 km and the depth to base of granite intrusion is about 20 km. A remarkable discovery in this study is the highly conductive layer beneath the basin, having the resistivity of 1 ohm-m to 30 ohm-m and the thickness of about 3 km to 4 km or more. Although we are not able to reveal the nature of this layer, the result of this study could provide some basic information with respect to the formation process and deposit environment of the proto-Kyongsang Basin.

  • PDF

Interpretation of Gravity, Magnetic and High-resolution (3.5 kHz) Seismic Data in the Powell Basin, Antarctica (남극 파월분지 지역의 중,자력 및 고해상 (3.5 KHZ) 탄성파 자료 해석)

  • Jin, YoungKeun;Kim, KyuJung;Nam, SangHeon;Kim, YeaDong;Lee, JooHan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Gravity, magnetic and high-resolution seismic surveys were carried out in the Powell Basin to examine tectonic structure and recent sedimentation on Dec. 2002. The trend of negative gravity anomalies along the spreading axis of the Powell Basin changes from northwest to east-west toward south. Both boundaries of the basin with the Antarctic Peninsula and the South Orkey micro-continent show negative magnetic anomalies, which indicates that the boundaries were continental rift areas in the initial stage of spreading. Magnitude of the magnetic anomalies corresponding to the axis of the basin is rather small compared to those of normal spreading axises in other regions. Such small anomalies would be caused by reduction of magnetic strength of oceanic crust below thick sediments due to thermal alternation. High-resolution (3.5 kHz) seismic profiles reveal that top of the South Scotia Ridge is a flat terrain coverd with thin coarse sediments by glacial erosion. Thick oceanic sediments are deposited in the central part of the basin. Little deformation in the oceanic sediments indicates that the Powell Basin has been in stable tectonic environment after spreading of the basin stopped.

  • PDF

Geophysical Investigation of the change of geological environment of the Nanjido Landfill due to the Stabilization Process (난지도 매립장의 안정화에 따른 지질환경 변화 조사를 위한 지구물리 탐사)

  • Lee, Kie-Hwa;Kwon, Byung-Doo;Rim, Hyoung-Rae;Yang, Jun-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.113-126
    • /
    • 2000
  • We have conducted multiple geophysical surveys to investigate the geoenvironmental change of the Nanjido Landfill due to the stabilization process. Geophyscial surveys are comprized of gravity, magnetic, dipole-dipole electrical and SP methods. Due to the field conditions, surveys were conducted on the top surface of the landfill no.2 and southern border areas in front of landfills. The gravity anomalies obtained on the top surface of the landfill no.2 in 1999 show that the gradient of the anomaly on the central area is decreasing in comparison with that observed four years ago. The complexity of magnetic anomaly pattern it also decreasing. These facts suggest that the stabilization work of the Nanjido landfill makes some progress by compaction process due to repetitive subsidence and refilling. The dipole-dipole electrical resistivity and SP data obtained on the outside of the waterproof wall at the landfill no.1 were severely affected by unsatisfactory surface conditions. On the other hand, the dipole-dipole electrical resistivity profiles obtained on the inside and outside parts of the waterproof wall at the landfill no.2 show the blocking effect of leachate flow by the waterproof wall. Few SP anomalies are observed on the top and side surfaces of the landfill no.2, but SP anomalies obtained on the base area inside the waterproof wall strongly reflect the effect of leachate collecting wells.

  • PDF

Shallow subsurface structure of the Vulcano-Lipari volcanic complex, Italy, constrained by helicopter-borne aeromagnetic surveys (고해상도 항공자력탐사를 이용한 Italia Vulcano-Lipari 화산 복합체의 천부 지하 구조)

  • Okuma, Shigeo;Nakatsuka, Tadashi;Komazawa, Masao;Sugihara, Mitsuhiko;Nakano, Shun;Furukawa, Ryuta;Supper, Robert
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.129-138
    • /
    • 2006
  • Helicopter-borne aeromagnetic surveys at two different times separated by three years were conducted to better understand the shallow subsurface structure of the Vulcano and Lipari volcanic complex, Aeolian Islands, southern Italy, and also to monitor the volcanic activity of the area. As there was no meaningful difference between the two magnetic datasets to imply an apparent change of the volcanic activity, the datasets were merged to produce an aeromagnetic map with wider coverage than was given by a single dataset. Apparent magnetisation intensity mapping was applied to terrain-corrected magnetic anomalies, and showed local magnetisation highs in and around Fossa Cone, suggesting heterogeneity of the cone. Magnetic modelling was conducted for three of those magnetisation highs. Each model implied the presence of concealed volcanic products overlain by pyroclastic rocks from the Fossa crater. The model for the Fossa crater area suggests a buried trachytic lava flow on the southern edge of the present crater. The magnetic model at Forgia Vecchia suggests that phreatic cones can be interpreted as resulting from a concealed eruptive centre, with thick latitic lavas that fill up Fossa Caldera. However, the distribution of lavas seems to be limited to a smaller area than was expected from drilling results. This can be explained partly by alteration of the lavas by intense hydrothermal activity, as seen at geothermal areas close to Porto Levante. The magnetic model at the north-eastern Fossa Cone implies that thick lavas accumulated as another eruption centre in the early stage of the activity of Fossa. Recent geoelectric surveys showed high-resistivity zones in the areas of the last two magnetic models.

Delineation of a fault zone beneath a riverbed by an electrical resistivity survey using a floating streamer cable (스트리머 전기비저항 탐사에 의한 하저 단층 탐지)

  • Kwon Hyoung-Seok;Kim Jung-Ho;Ahn Hee-Yoon;Yoon Jin-Sung;Kim Ki-Seog;Jung Chi-Kwang;Lee Seung-Bok;Uchida Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.50-58
    • /
    • 2005
  • Recently, the imaging of geological structures beneath water-covered areas has been in great demand because of numerous tunnel and bridge construction projects on river or lake sites. An electrical resistivity survey can be effective in such a situation because it provides a subsurface image of faults or weak zones beneath the water layer. Even though conventional resistivity surveys in water-covered areas, in which electrodes are installed on the water bottom, do give high-resolution subsurface images, much time and effort is required to install electrodes. Therefore, an easier and more convenient method is sought to find the strike direction of the main zones of weakness, especially for reconnaissance surveys. In this paper, we investigate the applicability of the streamer resistivity survey method, which uses electrodes in a streamer cable towed by ship or boat, for delineating a fault zone. We do this through numerical experiments with models of water-covered areas. We demonstrate that the fault zone can be imaged, not only by installing electrodes on the water bottom, but also by using floating electrodes, when the depth of water is less than twice the electrode spacing. In addition, we compare the signal-to-noise ratio and resolving power of four kinds of electrode arrays that can be adapted to the streamer resistivity method. Following this numerical study, we carried out both conventional and streamer resistivity surveys for the planned tunnel construction site located at the Han River in Seoul, Korea. To obtain high-resolution resistivity images we used the conventional method, and installed electrodes on the water bottom along the planned route of the tunnel beneath the river. Applying a two-dimensional inversion scheme to the measured data, we found three distinctive low-resistivity anomalies, which we interpreted as associated with fault zones. To determine the strike direction of these three fault zones, we used the quick and convenient streamer resistivity.

Optimal Determination of Marine Seismic Data Processing Parameter for Domi-Sediment Basin (도미퇴적분지 해양탄성파 탐사자료 최적 전산처리 변수도출)

  • Cheong, Snons;Kim, Won-Sik;Koo, Nam-Hyung;Yoo, Dong-Geun;Lee, Ho-Young;Shin, Won-Chul;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.279-285
    • /
    • 2008
  • Korea Institute of Geoscience & Mineral Resources (KIGAM) carried out 2 dimensional multi-channel seismic surveys for Domi-Basin of east-southern part of Jeju Island, South Sea, Korea in 2007. The purpose of this survey is to investigate the structure of acoustic basement and the potential of energy resources in the Korean shelf. It is essential to produce fine stack and migration section to understand the structure of basement. However a basement can not be clearly defined where multiples exist between sea surface and seafloor. This study aimed at designing the optimal data processing parameter, especially to eliminate the peg-leg multiples. Main data processing procedure is composed of minimum phase predictive deconvolution, velocity analysis and Radon filter. We tested the efficiency of processing parameter from stack sections of each step. Our results confirmed that processing parameters are suitable for the seismic data of Domi-Basin.

Data Processing using Anisotropic Analysis for the Long-offset Marine Seismic Data of the East Sea, Korea (동해 해역 원거리 해양탄성파 탐사자료의 이방성 분석을 이용한 전산처리)

  • Joo, Yonghwan;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • The acquisition and processing of long-offset data are essential for imaging deep geological structures in marine seismic surveys. It is challenging to derive an accurate subsurface image by employing conventional data processing to long-offset data owing to the normal moveout (NMO) stretch and non-hyperbolic moveout phenomena induced by seismic anisotropy. In 2017, the Korea Institute of Geoscience and Mineral Resources conducted a simultaneous two-dimensional multichannel streamer and ocean-bottom seismic survey using a 5.7-km streamer and an ocean-bottom seismometer to identify the deep geological structure of the Ulleung Basin. Herein, the actual geological subsurface structure was obtained via the sequential iterative updating of the velocity and anisotropic parameters of the long-offset data obtained using a multichannel streamer, and anisotropic prestack Kirchhoff migration was performed using the updated velocity and anisotropic parameters as input parameters. As a result, the reflection energy in the long-offset traces, which showed non-hyperbolic moveout owing to seismic anisotropy, was well aligned horizontally and NMO stretches were also reduced. Thus, a more precise and accurate migrated image was obtained, minimizing the distortion of reflectors and mispositioned reflection energy.

Digital Gravity Anomaly Map of KIGAM (한국지질자원연구원 디지털 중력 이상도)

  • Lim, Mutaek;Shin, Younghong;Park, Yeong-Sue;Rim, Hyoungrea;Ko, In Se;Park, Changseok
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • We present gravity anomaly maps based on KIGAM's gravity data measured from 2000 to 2018. Until 2016, we acquired gravity data on about 6,400 points for the purpose of regional mapping covering the whole country with data density of at least one point per $4km{\times}4km$ for reducing the time of the data acquisition. In addition, we have performed local gravity surveys for the purpose of mining development in and around the NMC Moland Mine at Jecheon in 2013 and in the Taebaeksan mineralized zone from 2015 to 2018 with data interval of several hundred meters to 2 km. Meanwhile, we carried out precise gravity explorations with data interval of about 250 m on and around epicenter areas of Gyeongju and Pohang earthquakes of relatively large magnitude which occurred in 2016 and in 2017, respectively. Thus we acquired in total about 9,600 points data as the result. We also used additional data acquired by Pusan National University for some local areas. Finally, gravity data more than 16,000 points except for the repetition and temporal control points were available to calculate free-air, Bouguer, and isostatic gravity anomalies. Therefore, the presented anomaly maps are most advanced in spatial distribution and the number of used data so far in Korea.