• 제목/요약/키워드: surfactant-free nanoparticles

검색결과 7건 처리시간 0.023초

Testosterone-encapsulated Surfactant-free Nanoparicles of Poly(DL-lactide-co-glycolide): Preparation and Release Behavior

  • Jeong, Young-Il;Shim, Yong-Ho;Song, Ki-Chan;Park, Youeng-Guen;Ryu, Hwa-Won;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1579-1584
    • /
    • 2002
  • Since surfactant or emulsifiers remained on the nanoparticle surface significantly affect the physicochemical properties, the biodegradation rate, the biodistribution, and the biocompatibility of nanoparticles, surfactant-free nanoparticles should be good candidate. surfactant-free PLGA nanoparticles were successfully prepared by both the dialysis method and the solvent diffusion method. The PLGA nanoparticles prepared using the solvent diffusion method has a smaller particle size than the dialysis method. The solvent diffusion method was better for a higher loading efficiency than the dialysis method but the nanoparticle yield was lower. Testosterone (TST) release from the PLGA nanoparticles was dependent on the particle size rather than the drug contents. Testosterone release from the PLGA nanoparticles prepared by the solvent diffusion method using acetone was faster than those prepared by the dialysis method. TST release from the PLGA nanoparticles prepared by the solvent diffusion method using acetone and the dialysis method using dimethylformamide (DMF) was completed for 4 days while the PLGA nanoparticles prepared by the dialysis method using acetone showed approximately 80% TST release after 4 days. Since the PLGA nanoparticle degradation ratio was below 20% within 5 days at all samples while TST release completed within 4 days, TST release was dependent on the diffusion mechanism rather than degradation.

계면활성제를 사용하지 않는 Poly(DL-lactide-co-glycolide) 나노입자로부터의 Norfloxacin 방출과 생분해 특성 (Norfloxacin Release from Surfactant-Free Nanoparticles of Poly(DL-lactide-co-glycolide) and Biodegradation)

  • 권중근;정영일;장미경;이창형;나재운
    • 폴리머
    • /
    • 제26권4호
    • /
    • pp.535-542
    • /
    • 2002
  • 투석법을 이ctide-co-glycolide) (PLGA) 나노입자를 제조하고 다양한 용매에 따른 입자 크기, 약물 함유량, 생분해도 등과 같은 물리ㆍ화학적 특성을 조사하였다. Dimethylacetamide (DMAc), dimethylformamide (DMF), dimethylsulfoxide (DMSO)로 제조된 PLGA 나노입자의 크기는 acetone으로 제조한 입자보다 적었다. 또한, 약물 함유량은 DMAc>DMF>DMSO=acetone 순서였다. PLGA 나노입자는 scanning electron microscopy (SEM)과 transmission electron microscopy (TEM)의 측정으로 구형임을 알 수 있었다. 계면활성제를 사용하지 않는 나노입자에 봉입된 norfloxacin (NFx)은 X-ray diffraction 분석을 통하여 입자 표면에 약물을 가지지 않는 좋은 약물 봉입 효율을 가짐을 알 수 있었다. 모델약물로 사용된 NFx의 방출속도는 약물 함유량뿐만 아니라 입사크기에 의해 좌우된다. 또한 PLGA 나노입자의 분해속도는 아세톤보다는 DMF를 사용하였을 때 더 빠르며 이는 PLGA 나노입자의 생분해성도 입자크기에 좌우된다는 것을 알 수 있었다.

All-trans Retinoic Acid Release from Surfactant-free Nanoparticles of Poly(DL-lactide-co-glycolide)

  • Jeong, Young-Il;Kim, Don-Gon;Jang, Mi-Kyeong;Nah, Jae-Woon;Kim, Yong-Bae
    • Macromolecular Research
    • /
    • 제16권8호
    • /
    • pp.717-724
    • /
    • 2008
  • In this study, we prepared all-trans retinoic acid (ATRA)-encapsulated, surfactant-free, PLGA nanoparticles. The nanoparticles were formed by nanoprecipitation process, after which the solvent was removed by solvent evaporation or dialysis method. When a nanoparticle was prepared by the nanoprecipitation - solvent evaporation method, the nanoparticles were bigger than the nanoparticles of the nanoprecipitation - dialysis method, despite the higher although loading efficiency. Nanoparticles from the nanoprecipitation - dialysis method were smaller than 200 nm in diameter, while the loading efficiency was not significantly changed. Especially, nanoparticles prepared from DMAc, 1,4-dioxane, and DMF had a diameter of less than 100 nm. In the transmission electron microscopy (TEM) observations, all of the nanoparticles showed spherical shapes. The loading efficiency of ATRA was higher than 90% (w/w) at all formulations with exception of THF. The drug content was increased with increasing drug-feeding amount while the loading efficiency was decreased. In the drug release study, an initial burst was observed for $2{\sim}6$ days according to the variations of the formulation, after which the drug was continuously released over one month. Nanoparticles from the nanoprecipitation - dialysis method showed faster drug release than those from the nanoprecipitation - solvent evaporation method. The decreased drug release kinetics was observed at lower drug contents. In the tumor cell cytotoxicity test, ATRA-encapsulated, surfactant-free, PLGA nanoparticles exhibited similar cytotoxicity with that of ATRA itself.

무유화 유화중합에 의해 합성된 Core/shell 형태 PMMA/CdS 나노입자의 특성분석 (Characterization of Core/Shell PMMA/CdS Nanoparticles Synthesized by Surfactant-free Emulsion Polymerization)

  • 윤효정;임영목;심상은
    • 접착 및 계면
    • /
    • 제13권4호
    • /
    • pp.188-192
    • /
    • 2012
  • in-situ 무유화 유화중합 및 후속 CdS 코팅 공정으로 이루어진 방법을 이용하여 CdS로 코팅된 PMMA 나노입자를 제조하고 그 특성을 분석하였다. 합성된 CdS/PMMA 나노입자의 크기는 201.7 nm 였으며, TGA 및 원소 분석 결과 10.37 wt%의 CdS를 함유하고 있었다. PMMA 입자 표면에 코팅된 CdS 나노결정의 크기는 3.55 nm였으며 주로 (111) 결정면으로 성장되었다. UV-vis 분석 결과 blue-shifting 현상이 관찰되었으며, 이는 CdS/PMMA 하이브리드 입자상태에서의 CdS는 벌크 상태의 CdS가 갖는 2.41 eV의 밴드갭 에너지보다 큰 2.70 eV를 갖기 때문에 발생하는 양자구속효과에 의하여 기인하였다.

Fluorescence and Laser Light Scattering Studies of Modified Poly(ethylene-co-methylacrylate0 Ionomers on the Formation of Stable Colloidal Nanoparticles in Aqueous Solution

  • 여상인;우규환
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권10호
    • /
    • pp.1054-1059
    • /
    • 1998
  • Fluorescence and dynamic light scattering measurements were applied to the study of formation and structure of aggregated colloidal particles in modified poly(ethylene-co-methylacrylate) ionomers in aqueous solution. Both 8-anillino-l-naphthalene-sulfonic acid (ANS) and pyrene were used as fluorescence probe to obtain the information on the structure of particle surface and inside, respectively. Three different ionomers used in this study started to aggregate at very dilute concentration, 3-8 x 10-6 g/mL. In this study, we demonstrate that the polyethylene ionomers can form stable nanoparticles. The hydrophobic core made of the polyethylene backbone chains is stabilized by the ionic groups on the particle surface. Such a formed stable nanoparticles have a relatively narrow size distribution with an average radius in the range of 27-48 nm, depending on the kind of ionic groups. Once the stable particles are formed, the particle size distributions were nearly constant. This study shows another way to prepare surfactant-free polyethylene nanoparticles.

아미노실란화 철산화물 나노입자를 이용한 Human DNA의 초고속 자성분리 (High Throughput Magnetic Separation for Human DNA by Aminosilanized Iron Oxide Nanoparticles)

  • 강기호;장정호
    • 한국세라믹학회지
    • /
    • 제45권10호
    • /
    • pp.605-609
    • /
    • 2008
  • This work describes the preparation of functionalized magnetic nanoparticles(MNPs) and their bioapplication to human DNA separation. Silica coated MNPs were prepared by changing the volume ratio of tetraethyl orthosilicate(TEOS) for controlled coating thickness on the original nanoparticle of MNPs. The sol-gel process in silica coating on MNPs surface was adapted for relatively mild reaction condition, low-cost, and surfactant-free. And then amino functionalized magnetic nanoparticles were synthesized using amine groups as surface modifiers. The result of adsorption efficiency for human DNA with amino-functionalized silica coated MNPs was calculated as a function of the number of amine groups.

코아 가교 양친성 고분자 나노입자 템플레이트를 이용한 무기물 나노 구조체 합성 (Use of Core-Crosslinked Amphiphilic Polymer Nanoparticles as Templates for Synthesis of Nanostructured Inorganic Materials)

  • 김현지;김나혜;김주영
    • 접착 및 계면
    • /
    • 제16권1호
    • /
    • pp.6-14
    • /
    • 2015
  • 본 연구에서는 양친성 반응성 고분자 전구체를 합성하고 이를 사용하여 화학적, 물리적으로 안정한 코아 가교 양친성 고분자(Core-crosslinked Amphiphilic Polymer; 이하 CCAP) 나노입자를 제조하였으며, CCAP 나노입자를 $TiO_2$ 나노입자 제조의 템플레이트로 응용하였다. 먼저 CCAP 나노입자 수용액과 티타늄 이소프로폭사이드(Titanium isopropoxide)를 혼합하여, 매우 안정한 유/무기 나노하이브리드 솔(Sol)을 제조하였으며, 제조된 솔(Sol)은 회전코팅(Spin coating) 기법을 통해 유/무기 하이브리드 박막으로 제조하고, 소결 공정을 통해서 템플레이트인 CCAP를 제거하여 제조된 $TiO_2$ 나노입자의 미세구조를 주사전자현미경(SEM)을 이용하여서 관찰하였다. 다양한 CCAP 나노입자를 템플레이트로 사용하여 제조된 $TiO_2$ 나노입자의 미세구조를 기존 유기물 템플레이트(계면활성제)를 사용하여 제조된 $TiO_2$ 나노입자의 미세구조와 비교하여, CCAP 나노입자가 $TiO_2$ 나노입자 구조에 미치는 영향을 조사하였다.