• Title/Summary/Keyword: surfactant micelles

Search Result 105, Processing Time 0.025 seconds

Sizes and Structures of Micelles of Cationic Octadecyl Trimethyl Ammonium Chloride and Anionic Ammonium Dodecyl Sulfate Surfactants in Aqueous Solutions

  • Kim, Hong-Un;Lim, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.382-388
    • /
    • 2004
  • The sizes and structures of micelles formed in aqueous solutions of cationic octadecyl trimethyl ammonium chloride (OTAC) and anionic ammonium dodecyl sulfate (ADS) surfactants were investigated using smallangle neutron scattering (SANS), self-diffusion coefficients by pulsed-gradient spin-echo (PGSE) NMR, and dynamic light scattering (DLS) methods. SANS and DLS data indicate that their structures are spherical at concentrations as high as 300 mM. As the total surfactant concentration increases, the peaks of SANS spectra shift to higher scattering vector and become sharper, indicating that the intermicellar distance decreases and its distribution becomes narrower. This is due to more compact packing of surfactant molecules at high concentrations. The intermicellar distance of around 100 ${\AA}$ above 200 mM corresponds approximately to the diameter of one micelle. The sizes of spherical micelles are 61 ${\AA}$ and 41 ${\AA}$ for 9 mM OTAC and 10 mM ADS, respectively. Also the self-diffusion coefficients by PGSE-NMR yield the apparent sizes 96 ${\AA}$ and 31 ${\AA}$ for micelles of 1 mM OTAC and 10 mM ADS, respectively. For ADS solutions of high concentrations (100-300 mM), DLS data show that the micelle size remains constant at $25{\pm}2{\AA}$. This indicates that the transition in micellar shape does not take place up to 300 mM, which is consistent with the SANS results.

Removal of Sorbed Naphthalene from Soils Using Nonionic Surfactant (비이온성 계면활성제를 이용한 토양내 수착된 나프탈렌의 제거)

  • Ha, Dong-Hyun;Shin, Won-Sik;Oh, Sang-Hwa;Song, Dong-Ik;Ko, Seok-Oh
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.549-563
    • /
    • 2010
  • The environmental behaviors of polycyclic aromatic hydrocarbons (PAHs) are mainly governed by their solubility and partitioning properties on soil media in a subsurface system. In surfactant-enhanced remediation (SER) systems, surfactant plays a critical role in remediation. In this study, sorptive behaviors and partitioning of naphthalene in soils in the presence of surfactants were investigated. Silica and kaolin with low organic carbon contents and a natural soil with relatively higher organic carbon content were used as model sorbents. A nonionic surfactant, Triton X-100, was used to enhance dissolution of naphthalene. Sorption kinetics of naphthalene onto silica, kaolin and natural soil were investigated and analyzed using several kinetic models. The two compartment first-order kinetic model (TCFOKM) was fitted better than the other models. From the results of TCFOKM, the fast sorption coefficient of naphthalene ($k_1$) was in the order of silica > kaolin > natural soil, whereas the slow sorbing fraction ($k_2$) was in the reverse order. Sorption isotherms of naphthalene were linear with organic carbon content ($f_{oc}$) in soils, while those of Triton X-100 were nonlinear and correlated with CEC and BET surface area. Sorption of Triton X-100 was higher than that of naphthalene in all soils. The effectiveness of a SER system depends on the distribution coefficient ($K_D$) of naphthalene between mobile and immobile phases. In surfactant-sorbed soils, naphthalene was adsorbed onto the soil surface and also partitioned onto the sorbed surfactant. The partition coefficient ($K_D$) of naphthalene increased with surfactant concentration. However, the $K_D$ decreased as the surfactant concentration increased above CMC in all soils. This indicates that naphthalene was partitioned competitively onto both sorbed surfactants (immobile phase) and micelles (mobile phase). For the mineral soils such as silica and kaolin, naphthalene removal by mobile phase would be better than that by immobile phase because the distribution of naphthalene onto the micelles ($K_{mic}$) increased with the nonionic surfactant concentration (Triton X-100). For the natural soil with relatively higher organic carbon content, however, the naphthalene removal by immobile phase would be better than that by mobile phase, because a high amount of Triton X-100 could be sorbed onto the natural soil and the sorbed surfactant also could sorb the relatively higher amount of naphthalene.

SANS Studies on the Formation of PANI Nanoparticles in the Reverse Micelles

  • Sim, Jae-Hyun;Kim, Myung-woong;Park, Sang-wook;Bang, Jeong-Hwa;Sohn, Dae-won
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.251-254
    • /
    • 2006
  • The formation of polyaniline (PANI) in the reverse micelles of poly(oxyethylene) nonylphenyl ether, $(NP5, H(CH_2)_9Ph(OC_2H_4)_5OH)$, was investigated by small-angle neutron scattering (SANS). The reverse micellar solution containing initiators in the inner part of reverse micelle was prepared with surfactant (NP5), water, cyclohexane and an initiator (ammonium persulfate (APS)). The core-shell sphere model containing smearing effect reveals that the polymerization occurs on the shell layer of the reverse micelles. Shell thickness averages varied from 48 $\AA$ to 109 $\AA$ with increases of monomer concentration.

Solution properties of sodium n-dodecyl sulfate in the presence of meso-tetrakis (N-methylpyridinium-4-yl) porphyrin (Meso-tetrakis (N-methylpyridinium-4-yl) porphyrin 존재 하에서 sodium n-dodecyl sulfate 용액 성질)

  • Hassanpour, Azin;Azani, Mohammad-Reza;Bordbar, Abdol-Khalegh
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • The solution properties of sodium n-dodecyl sulfate, as an anionic surfactant in the presence of a cationic watersoluble 5, 10, 15, 20-tetrakis (N-methylpyridinium-4-yl) porphyrin (TMPyP) has been comprehensively studied by means of conductometry, UV-vis and resonance light scattering (RLS) spectroscopies. The results represent the decreasing of critical micelle concentration of SDS solution due to increasing of TMPyP concentration. The stabilization of SDS micelle is due to neutralization of negative charge at the micelle surface. The presence of three different species of TMPyP in SDS solution has been unequivocally demonstrated: free porphyrin monomers, porphyrin monomers or aggregates bound to the micelles, and nonmicellar porphyrin/surfactant aggregates. Our results show SDS induced an aggregation in TMPyP. In fact two kinds of J-aggregations were observed: one of them for porphyrin monomers or aggregates bound to the micelles and the other for nonmicellar porphyrin/surfactant aggregates. However, the results represent the electrostatic interaction of TMPyP with SDS anion below the cmc.

Extraction of Cd and Pb from Soil by Anionic Surfactant and Ligand NaI (NaI 리간드화 계면활성제에 의한 토양내 Cd과 Pb 추출 연구)

  • Heo, Jung-Hyun;Jeong, Seung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.74-80
    • /
    • 2008
  • Heavy metals, Cd and Pb, in soil were extracted by using anionic surfactants such as AOS (alpha olefin sulfonate), SDS (sodium dodecyl sulfate), and LAS (linear alkyl benzene sulfonic acid). Metal extractability from soil was affected by the carbon number and solution pH of surfactants. LAS showed higher metal extractability due to the acidic solution condition. Although SDS has a fewer carbon number than AOS, it would produce smaller micelles and resulted in more efficient extraction of metals by increased soil contact. Cd extractability of surfactant was twice enhanced by adding NaI as a ligand. However, Pb extractability of surfactant was sometimes reduced by adding NaI. Those ligand effects were dependent on solubility of metal-ligand. The column experiment also showed that SDS having smaller micelles resulted in higher metal extractability than AOS.

Effect of Polysorbate 80 and Benzyl Alcohol on the Solubility of Amiodarone Hydrochloride

  • LEONTIEV, Viktor;LAZOVSKAYA, Olesya
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.4
    • /
    • pp.13-17
    • /
    • 2019
  • Amiodarone hydrochloride is an antiarrhythmic agent which has low aqueous solubility and presents bioavailability problem. These properties are a challenge for the pharmaceutical industry. Inclusion of lipophilic compound in the hydrophobic core of micelles, i.e. self-assembled structures based on surfactants in aqueous solution, is one way of increasing the solubility. Intravenous formulation of amiodarone hydrochloride with polysorbate 80 as a detergent and benzyl alcohol as a co-solvent is used in medical practice. This paper aimed to study the effect of polysorbate 80 and benzyl alcohol on the water solubility of amiodarone hydrochloride. Formation of mixed micelles consisting of nonionic surfactant polysorbate 80 and cationic amiodarone with chloride counterion was investigated by fluorescence spectroscopy. Benzyl alcohol was found to decrease the stability of the mixed micelles and lead to crystallization of amiodarone hydrochloride. The greatest amounts of crystals formed at 4℃ for 30 days in the model drug solutions with polysorbate 80 concentrations of 100.1 mg/mL and 97.9 mg/mL. A change of the polysorbate 80 concentration and avoidance the use of benzyl alcohol are recommended to improve the stability of the parenteral dosage form. These results can open new perspectives in the optimization of amiodarone intravenous formulations.

Electrophoretic Mobility to Monitor Protein-Surfacant Interactions

  • Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 1998
  • Protein -surfactant interactions have been investigate by measuring ζ-potential of $\beta$-lactoglobulin-coated emulsion droplets and $\beta$-lactoglobulin in solution in the rpesenceof surfactant, with particular emphasis on the effect of protein heat treatment(7$0^{\circ}C$, 30min). When ionic surfactant (SDS or DATEM) is added to the protein solution, the ζ-potential of the mixture is found to increase with increasing surfactant concentration, indicating surfactant binding to the protein molecules. For heat-denatured protein,it has been observed that the ζ-potential tends to be lower than that of the native protein. The effect of surfactant on emulsions is rather complicated .With SDS, small amounts of surfactant addition induce a sharp increase in zeta potential arising from the specific interaction of surfactant with protein. With further surfacant addition, there is a gradual reductio in the ζ-potential, presumably caused by the displacement of adsorped protein (and protein-surfactant complex) from the emulsion droplet surfac by the excess of SDS molecules. At even higher surfactant concentrations, the measured zeta potential appears to increase slightly, possibly due to the formation of a surfactant measured zeta potential appears to increase slightly, possibly due to the formation of surfactant micellar structure at the oil droplet surface. This behaviour contrastswith the results of the corresponding systems containing the anionic emulsifier DATEM, in which the ζ-potential of the system is found to increase continuously with R, particularly at very low surfactant concentration. Overall, such behaviour is consisten with a combination of complexation and competitive displacement between surfactant and protein occurring at the oil-water interface. In addition, it has also been found that above the CMC, there is a time-dependent increase in the negative ζ-potential of emulsion droplets in solutions of SDS, possibly due to the solublization of oil droplets into surfactant micelles in the aqueous bulk phase.

  • PDF

Study of Kinetics of Bromophenol Blue Fading in the Presence of SDS, DTAB and Triton X-100 by Classical Model

  • Samiey, Babak;Alizadeh, Kamal;Moghaddasi, Mohammad Ali;Mousavi, Mir Fazlolah;Alzadeh, Nader
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.726-736
    • /
    • 2004
  • In this paper, kinetics of reaction between Bromophenol blue (BPB) and $OH^-$, called fading, has been studied through a spectrophotometric method in the presence of nonionic Triton X-100 (TX-100), anionic sodium dodecyl sulfate (SDS) and cationic dodecyl trimethylammonium bromide (DTAB) surfactants. The influence of changes in the surfactant concentration on the observed rate constant was investigated. The results are treated quantitatively by pseudophase ion-exchange (PPIE) model and a new simple model called "classical model". The binding constants of BPB molecules to the micelles and free molecules of surfactants, their stoichiometric ratios and thermodynamic parameters of binding have been evaluated. It was found that SDS has nearly no effect on the fading rate up to 10 mM, whereas TX-100 and DTAB interact with BPB which reduce the reaction rate. By the use of fading reaction of BPB, the binding constants of SDS molecules to TX-100 micelles and their Langmuir and Freundlich adsorption isotherms were obtained and when mixtures of DTAB and TX-100 were used, no interaction was observed between these two surfactants.

Investigation of the Interactions between Anionic Polymer and Nonionic Surfactant with Rheological and Surface Tension Measurements (유변학적 특성과 표면장력측정을 통한 음이온성 폴리머와 비이온성 계면활성제의 상호작용에 대한 연구)

  • Lee, Jung-No;Kim, Dong-Joo;Koh, Ha-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.160-166
    • /
    • 2007
  • The rheological properties and surface tensions of polymer solutions and polymer-surfactant mixed solutions were investigated. The polymers used in this study were a homopolymer of acrylic acid crosslinked with an allyl ether of pentaerythritol, an allyl ether of sucrose, or an allyl ether of propylene (CARBOMER), acylate/C10-30 alkyl acylate crosspolymer (AAAC), and ammonium acryloydimethyltaurate/VP copolymer (ADTV). A solubilizing agent PEG-40 hydrogenated castor oil (HCO-40) and an emulsifying agent polyoxyethylene (20) sorbitan monostearate (POLYSORBATE 60) made the micelles intervening between AAAC polymers, resulting in the increase of viscosity. However, HCO-40 made this behavior over the wider range of surfactant concentration than POLYSORBATE 60. From the view point of surface tensions in the same range of surfactant concentration, AAAC/HCO-40 solution showed the area of increasing surface tension with surfactant concentration in contrast to the AAAC/POLYSORBATE 60 solution showing no increasing area.

Characteristics of Nitrate Removal Using Micellar-enhanced Ultrafiltration (MEUF에 의한 질산성 질소 제거에 관한 연구)

  • 백기태;이현호;김보경;김호정;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.36-43
    • /
    • 2003
  • Feasibility of micellar-enhanced ultrafiltration far the removal of nitrate was investigated using cationic surfactants, cetylpyridinium chloride and octadecylamine acetate. The removal of nitrate increased as the molar ratio of surfactant increased. With the molar ratio of 3, at least 80% of nitrate was removed, while > 98% of nitrate was removed at the surfactant molar ratio of 10. Octadecylamine acetate showed higher removal efficiency of nitrate and higher rejection of surfactant than cetylpyridinium chloride because of the accessibility of nitrate to surfactant micelles due to head group of surfactant. Octadecylamine acetate turned out to be a better surfactant than cetylpyridinium chloride for micellar-enhanced ultrafiltration to remove nitrate from groundwater.