• Title/Summary/Keyword: surfaces to interfaces

Search Result 134, Processing Time 0.022 seconds

Design of A Force-Reflecting 3DOF Interface using Phase-Difference Control of Ultrasonic Motors (초음파 모터의 위상차 제어를 이용한 3자유도 힘반영 촉각장치 설계)

  • 오금곤;조진섭;김동옥;김영동;김재민
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.84-87
    • /
    • 1999
  • This paper proposes an interfaces control system to drive a ultrasonic motors(USMs). To touch surfaces and objects created within a virtua environment, the 3 DOF force-reflecting interfaces provides force feedback to users, so to feel touching real things. To effectively display the mechanical impedance of the human hand we need a device with specific characteristics, such as low inertia almost zero friction and very high stiffness. As an actuator for direct drive method, the USMs have many good advantages satisfied these conditions over conventional servo motors. To estimate capability of this interface, we did an experiment. The device works very well, as user are able to detect the edge of the wall and the stiffness of the button.

  • PDF

Irregular Failures at Metal/polymer Interfaces

  • Lee, Ho-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.347-355
    • /
    • 2003
  • Roughening of metal surfaces frequently enhances the adhesion strength of metals to polymers by mechanical interlocking. When a failure occurs at a roughened metal/polymer interface, the failure prone to be cohesive. In a previous work, an adhesion study on a roughened metal (oxidized copper-based leadframe)/polymer (Epoxy Molding Compound, EMC) interface was carried out, and the correlation between adhesion strength and failure path was investigated. In the present work, an attempt to interpret the failure path was made under the assumption that microvoids are formed in the EMC as well as near the roots of the CuO needles during compression-molding process. A simple adhesion model developed from the theory of fiber reinforcement of composite materials was introduced to explain the adhesion behavior of the oxidized copper-based leadframe/EMC interface and failure path. It is believed that this adhesion model can be used to explain the adhesion behavior of other similarly roughened metal/polymer interfaces.

Comparative Study on the Failure of Polymer/Roughened Metal Interfaces under Mode-I Loading I: Experimental Result (인장하중하에서의 고분자/거친금속 계면의 파손에 대한 비교연구 I: 실험결과)

  • Lee Ho-Young;Kim Sung-Ryong
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Copper-based leadframe sheets were immersed in two kinds of hot alkaline solutions to form brown-oxide or black-oxide layer on the surface. The oxide-coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched double-cantilever beam (SDCB) specimens. The SDCB specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under quasi-Mode I loading conditions. Fracture surfaces were analyzed by various equipment to investigate failure path. The present paper deals with the failure path, and the cause of the failure path formation with an adhesion model will be treated in the succeeding paper.

Development of Novel Materials for Reduction of Greenhouse Gases and Environmental Monitoring Through Interface Engineering

  • Hirano, Shin-Ichi;Gang, Seok-Jung L.;Nowotny, Janusz-Nowotny;Smart, Roger-St.C.Smart;Scrrell, Charles-C.Sorrell;Sugihara, Sunao;Taniguchi, Tomihiroi;Yamawaki, Michio;Yoo
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.635-653
    • /
    • 1999
  • The present work considers work considers research strategies to address global warming. Specifically, this work considers the development of technologies of importance for the reduction of greenhouse gas emission and, especially, the materials that are critical to these technologies. It is argued that novel materials that are essential for the production of environmentally friendly energy may be developed through a special kind of engineering: interface engineering, rather than through classical bulk chemistry. Progress on the interface engineering requires to increase the present state of understanding on the local properties of materials interfaces and interfaces processes. This, consequently, requires coordinated international efforts in order to establish a strong background in the science of materials interfaces. This paper considers the impact of interfaces, such as surfaces and grain boundaries, on the functional properties of materials. This work provides evidence that interfaces exhibit outstanding properties that are not displayed by the bulk phase. It is shown that the local interface chemistry and structure and entirely different than those of the bulk phase. In consequence the transport of both charge and matter along and across interfaces, that is so important for energy conversion, is different than that in the bulk. Despite that the thickness of interfaces is of an order to a nanometer, their impact on materials properties is substantial and, in many cases, controlling. This leads to the conclusion that the development of novel materials with desired properties for specific industrial applications will be possible through controlled interface chemistry. Specifically, this will concern materials of importance for energy conversion and environmental monitoring. Therefore, there is a need to increase the present state of understanding of the local properties of materials interfaces and the relationship between interfaces and the functional properties of materials. In order to accomplish this task coordinated international efforts of specialized research centres are required. These efforts are specifically urgent regarding the development of materials of importance for the reduction of greenhouse gases. Success of research in this area depends critically on financial support that can be provided for projects on materials of importance for a sustainable environment, and these must be considered priorities for all of the global economies. The authors of the present work represent an international research group economies. The authors of the present work represent an international research group that has entered into a collaboration on the development of the materials that are critical for the reduction of greenhouse gas emissions.

  • PDF

Electrochemical Impulse Oscillations at the Platinum Group Electrode Interfaces (백금족 전력 계면에서 전기화학적 Impulse 발진)

  • 전장호;손광철;라극환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.143-151
    • /
    • 1995
  • The electrochemical impulse oscillations of the cathodic currents at the platinum group (Pt, Pd) electrode/(0.05M KHC$_{8}H_{4}O_{4}$) buffer solution interfaces have been studied using voltammetric, chronoamperometric, and electrochemical impedance methods. The periodic impulses of the cathodic currents are the activation controlled currents due to the hydrogen evolution reaction, and depend on the fractional surface coverage of the adsorbed hydrogen intermediate and potential. The oscillatory mechanism of the cathodic current impulses is connected with the unstable steady state of negative differential resistance. The widths and periods of the cathodic current impulses are 4ms or 5ms and 152.5ms or 305ms, respectively. The H$^{+}$ discharge reaction step is 38 or 61 times faster thatn the recombination reaction steps and the H$^{+}$ mass transport processes. The atom-atom recombination reaction step is twice faster thatn the atom-ion recombination reaction step. The two kinds of active sites corresponding to the atom-atom and atom-ion recombination reaction steps exist on the platinum group electrode surfaces.

  • PDF

The Influence of Surface Treatment and Opaque Application Methods on the Bond Strength of PFM Restorations (모래분사법과 불투명 도재의 도포방법이 도재용착주조관의 전단결합강도에 미치는 영향)

  • Kim, Sung-Min;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.339-347
    • /
    • 2011
  • Purpose: This study was investigated the bonding strength of two kinds of Ni-Cr alloy with respect to the condition of surface treatment. Methods: The surface treatment was performed on the two kinds of Ni-Cr alloy (B alloy and R alloy) specimens, which were sandblasted with $50{\mu}m$, $110{\mu}m$, and $250{\mu}m$ aluminium oxide and were treated with opaque application (paste and wash opaque). The roughness on the surfaces of the specimens was observed. The metal-ceramic interfaces were analyzed with EPMA in order to ionic diffusion, and the shear test was performed. Results: The BA250 specimen, which has higher surface roughness, showed the highest bonding strength in B specimens. In R specimens, the bonding strength of RA110 specimen was the highest. Conclusion: B specimen formed a mechanical bond between metal-ceramic interfaces; however, in the case of R specimen, a chemical bond was formed between that interfaces. There was no significant statistical difference between the bonding strengths of two types of specimens (p>0.05).

Interfaces Between Rubber and Metallic or Textile Tire Cords

  • Ooij Wim J. Van;Luo Shijian;Jayaseelan Senthil K,
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.299-314
    • /
    • 1999
  • Bonding metal and textile components to rubber has always posed a problem. In this paper, an attempt had been made to modify textile and metal surfaces for bonding with rubber. The metal surfaces were modified using silane coupling agents and textile fibers were modified using plasma polymerization techniques. Some results on adhesion of metals to a range of sulfur-cured rubber compounds using a combination of organofunctional silanes are given here. The treatment was not only effective for high-sulfur compounds but also for low-sulfur com pounds as used in engine mounts and even for some semi-EV compounds. Coatings of plasmapolymerized pyrrole or acetylene were deposited on aramid and polyester tire cords. Standard pull-out force adhesion measurements were used to determine adhesion of tire cords to rubber compounds. The plasma coatings were characterized by various techniques and the performance results are explained in an interpenetrating network model.

  • PDF

Thermohydrodynamic Analysis Considering Flow Field Patterns Between Roughness Surfaces (미세 표면 거칠기에 지배되는 박막 유동장 형태를 고려한 윤활거동)

  • 김준현;김주현
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.167-177
    • /
    • 2003
  • The study deals with the development of a thermohydrodynamic (THD) computational procedure for evaluating the pressure, temperature and velocity distributions in fluid films with very rough geometry. A parametric investigation is performed to predict the bearing behaviors in the lubricating film having the absorbed layers and their interfaces determined by the rough surfaces with Gaussian distribution. The layers are expressed as functions of the standard deviations of each surface to characterize flow patterns between both the rough sur-faces. The velocity variations and the heat generation are assumed to occur in the central (shear) zone with the same bearing length and width. The coupled effect of surface roughness and shear zone dependency on hydrodynamic pressure and temperature has been found in non-contact mode. The procedure confirms the numerically determined relationship between the pressure and film gap on condition that its roughness magnitude is smaller than the fluid film thickness.

The Study on Reconstruction of Composite Surfaces by Reverse Engineering Techniques (Reverse Engineering 기술을 적용한 복합면의 재구성 정보 추출을 위한 연구)

  • Seo, Ji-Han;Lee, Hong-Chul;Shone, Young-Tea;Park, Se-Hyung
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.205-209
    • /
    • 1999
  • In reverse engineering area, the reconstruction of surfaces from scanned or digitized data is being developed, but geometric model of existing objects is not available in industries. This paper presents the new approach to the reconstruction of surface technique. A proposed methodology finds base geometry and blends surface between them. Each based geometry is divided by tri-angular patches which are compared with their normal vector for face grouping. Each group is categorized analytical surface such as a part of cylinder, sphere and cone, and plane shapes to represent the based geometry surface. And then, each based geometry surface is implemented to the infinitive surface. Infinitive surface's intersections are trimmed by boundary representation model reconstruction. This method has several benefits such as time efficiency and automatic functional modeling system in reverse engineering. Especially, it can be directly applied 3D fax and 3D copier.

  • PDF

Breakdown characteristics of EPDM/XLPE laminate (XLPE /EPDM laminate의 절연파괴 특성)

  • Nam, Jin-Ho;Suh, Kwang-S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1596-1598
    • /
    • 1999
  • In order to determine what influences the interfacial breakdown between two internal dielectric surfaces. We studied the interfacial breakdown phenomena at several interfacial conditions. With the increase of interfacial pressure, at first breakdown strength in interfaces was increased, and then saturated. Breakdown strength in interface pasted with silicone oil was higher than that with silicone grease. As a function of heat treatment time in a vacuum oven interfacial breakdown strength was increased much in XLPE/EPDM laminates pasted with silicone grease but increased a little in that with silicone oil. As an increase of curing agent in silicone oil and grease, breakdown strength in interfaces was increased and then saturated.

  • PDF