• Title/Summary/Keyword: surface-step

Search Result 1,913, Processing Time 0.038 seconds

Effects of Gas Composition on the Characteristics of Surface Layers Produced on AISI316L Stainless Steel during Low Temperature Plasma Nitriding after Low Temperature Plasma Carburizing (AISI 316L stainless steel에 저온 플라즈마 침탄 및 질화처리 시가스조성이 표면특성에 미치는 영향)

  • Lee, In-Sup;Ahn, Yong-Sik
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.116-121
    • /
    • 2009
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) offer the increase of both surface hardness and thickness of hardened layer and corrosion resistance than the individually processed low temperature nitriding and low temperature carburizing techniques. The 2-step low temperature plasma processes were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The influence of gas compositions on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ and concentration of N on the surface increased with increasing both nitrogen gas and Ar gas levels in the atmosphere. The thickness of ${\gamma}_N$ increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness was independent of nitrogen and Ar gas contents and reached up to about 1200 $HV_{0.1}$ which is about 5 times higher than that of untreated sample (250 $HV_{0.1}$). The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was also much enhanced than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.

Switching of the Dimer-row Direction through Sb-passivation on Vicinal Si(001) Surface of a Single Domain

  • Dugerjav, Otgonbayar;Kim, Hui-Dong;Seo, Jae-Myeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.186-186
    • /
    • 2011
  • [100] 방향으로 4$^{\circ}$ 기울어진 Si(001)-2${\times}$1(vicinal surface)을 초고진공하(UHV)에서 청결하게 하고 열처리하면 rebonded-atom을 가진 DB double step과 이 step에 나란한 아홉 개의 dimer를 가진 평균 폭이 4.0 nm인 single-domain의 (001)-2${\times}$1 테라스의 면으로 재구조된다 [그림 a]. 본 연구에서는 이 표면 위에 Sb을 상온에서 증착하여 덮고 후열처리하면(2 ML, 500$^{\circ}C$ 10 분), Sb-dimer가 Si 표면을 한 층 덮고 (001) 테라스의 Sb-dimer 방향이 DA double-step과 수직을 이루는 1${\times}$2 구조를 이룬다는 사실을 STM으로 확인하였다 [그림 b]. 이러한 Sb-passivation의 효과는 표면 Si-dimer의 부분적으로 채워진 dangling-bond를 Sb-dimer의 완전히 채워진 고립쌍(lone-pair)으로 바꿈으로써 표면 자유 에너지를 줄이고, 나아가 계면 Si 층은 bulk에 유사하게 되는 데에 있다. 이 passivation 된 표면은 Ge/Si 등의 heteroepitaxy에 사용할 수 있고, 특히 single-domain을 유지하며 step 방향에 대해 평행인 dimer-row로 이루어져 있어서 원자나 전자의 이동에 비등방적 효과를 증가시킬 것이 예측된다.

  • PDF

A Multi-Step Digitizing Method and Reverse Model Generation for Improvement of Reverse Engineering Accuracy (역공학의 정밀도 향상을 위한 점 데이터의 다단계 획득 및 역모델 형성)

  • 김권흡;장경열;유우식;박정환;고태조;배석형
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.3
    • /
    • pp.133-140
    • /
    • 2003
  • This paper describes a Multi-step Digitizing Method and Reverse Model generation algorithm for improvement of reverse engineering accuracy. Reverse engineering is the process of reproducing computational model by directly extracting geometric information on the physical objects. For the improvement of measuring data accuracy, we propose a multi-step digitizing method. First, measuring cloud-of-point by use of a laser scanning system. Second, gathering digitizing data by a scanning touch probe. Fine digitizing plan generated from coarse surface model directly from the cloud-of-point and it allows CMM more accurate scanning data. Finally in this paper we propose the algorithm of generating NURB surface from more accurate measuring points.

Effect of Anodizing Current Density on Anti-Corrosion Characteristics for Al2O3 Oxide Film (Al2O3 산화 피막의 내식성에 미치는 양극산화 전류밀도의 영향)

  • Lee, Seung-Jun;Jang, Seok-Gi;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.153-153
    • /
    • 2016
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the sea water upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Afterward, the irregular oxide film that was created in the first step surface modification was removed. For the second step surface modification process (identical to the step 1), etching was performed using mixture of chromic acid (1.8 wt.%) and phosphoric acid (6 wt.%) at $60^{\circ}C$ temperature for 30 minutes. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification presented a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

One-Step Synthesis of Catalyst Supported on Carbon Materials (나노 촉매가 담지 된 탄소소재의 One-Step 합성)

  • Gang, Jun;Lee, Myeong-Hun;Yun, Yong-Seop;Park, Jun-Mu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.268-269
    • /
    • 2014
  • 나노입자 담지 탄소소재는 촉매재료로써 다양하게 응용되고 있으며, 이들 재료의 공정수를 획기적으로 줄이고자 솔루션 플라즈마라는 새로운 공정을 이용하여 One-Step으로 합성하는데 성공하였다. 합성된 재료의 경우 1~3nm의 미세한 나노입자가 탄소소재위에 균일하게 분산되어 있는 것을 확인 할 수 있었고, 촉매 활성 역시 매우 뛰어남을 확인 할 수 있었다.

  • PDF

Optimizing Food Processing through a New Approach to Response Surface Methodology

  • Sungsue Rheem
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.374-381
    • /
    • 2023
  • In a previous study, 'response surface methodology (RSM) using a fullest balanced model' was proposed to improve the optimization of food processing when a standard second-order model has a significant lack of fit. However, that methodology can be used when each factor of the experimental design has five levels. In response surface experiments for optimization, not only five-level designs, but also three-level designs are used. Therefore, the present study aimed to improve the optimization of food processing when the experimental factors have three levels through a new approach to RSM. This approach employs three-step modeling based on a second-order model, a balanced higher-order model, and a balanced highest-order model. The dataset from the experimental data in a three-level, two-factor central composite design in a previous research was used to illustrate three-step modeling and the subsequent optimization. The proposed approach to RSM predicted improved results of optimization, which are different from the predicted optimization results in the previous research.

Effects of Processing Time and Temperature on the Surface Properties of AISI 316L Stainless steel During Low Temperature Plasma Nitriding After Low Temperature Plasma Carburizing (AISI 316L stainless steel에 저온 플라즈마 침탄처리 후 질화처리 시 처리시간과 온도가 표면특성에 미치는 영향)

  • Lee, Insup
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.357-362
    • /
    • 2008
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The effects of processing time and temperature on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ was increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness reached up to $1,200HV_{0.1}$ which is about 5 times higher than that of untreated sample ($250HV_{0.1}$). The thickness of ${\gamma}_N$ and concentration of N on the surface were increased with increasing processing time and temperature. The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was enhanced more than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.

The Development of Taguchi and Response Surface Method Combined Model (Taguchi-RSM 통합모델 제시)

  • Ree, Sang-Bok;Kim, Youn-Soo;Yoon, Sang-Woon
    • IE interfaces
    • /
    • v.23 no.3
    • /
    • pp.257-263
    • /
    • 2010
  • Taguchi defined a good quality as 'A correspondence of product characteristic's expected value to the objective value satisfying the minimum variance condition.' For his good quality, he suggested Taguchi Method which is called Robust design which is irrelevant to the effect of these noise factors. Taguchi Method which has many success examples and which is used by many manufacturing industry. But Optimal solution of Taguchi Method is one among the experiments which is not optimal area of experiment point. On the other hand, Response Surface Method (RSM) which has advantage to find optimal solution area experiments points by approximate polynomial regression. But Optimal of RSM is depended on initial point and RSM can not use many factors because of a great many experiment. In this paper, we combine the Taguchi Method and the Response Surface Method with each advantage which is called Taguchi-RSM. Taguchi-RSM has two step, first step to find first solution by Taguchi Method, second step to find optimal solution by RSM with initial point as first step solution. We give example using catapults.

Resistance Reduction of a High Speed Small Boat by Air Lubrication

  • Jang Jin-Ho;Kim Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • The resistance reduction by an air lubrication effect of a large air cavity covering the hull bottom surface and the similarity relations involved have been investigated with a series of towing tank tests of three geometrically similar models. The test results of geometrically similar models have indicated that a large air cavity was formed beneath the bottom having a backward-facing step by artificially supplying air is effective for resistance reduction. The areas of air cavity and the required flow rates of air are directly related to the effective wetted surface area. The traditional extrapolation methods seem to be applicable to the estimation of the resistance in the tested range if corrections are made to account the changes in the frictional resistance caused by the changes in the effective wetted surface area. To investigate the effectiveness of air lubrication in improving the resistance performance of a practical ship, a small test boat having a backward-facing step under its bottom has been manufactured and speed trials in a river have been performed. Air has been supplied artificially into the downstream region of the bottom step to form a large air cavity covering the bottom surface. The results have confirmed the practical applicability of air lubrication for the resistance reduction of a small high-speed boat.

CNC Tool Path Planning for Free-Form Sculptured Surface with a New Tool Path Interval Algorithm (새로운 공구경로간격 알고리듬을 이용한 자유곡면에서의 CNC 공구경로 계획)

  • Lee, Sung-Gun;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.43-49
    • /
    • 2001
  • A reduced machining time and increased accuracy for the sculptured surface are very important when producing complicated parts. The step-size and tool-path interval are essential components in high speed and high resolution machining. If they are small, the machining time will increase, whereas if they are large, rough surfaces will be caused. In particular, the machining time, which is key in high speed machining, is affected by the tool-path interval more than the step-size. The conventional method for calculating the tool=path interval is to select a small parametric increment of a small increment based on the curvature of the surface. However, this approach also has limitations. The first is that the tool-path interval can not be calculated precisely. The second is that a separate tool-path interval needs to be calculated in each of the three cases. The third is that the conversion from Cartesian domain to parametric domain or vice versa must be necessary. Accordingly, the current study proposes a new tool-path interval algorithm that do not involve a curvature and that is not necessary for any conversion and a variable step-size algorithm for NURBS.

  • PDF