• Title/Summary/Keyword: surface-modification technology

Search Result 658, Processing Time 0.027 seconds

Characterization and hydrothermal surface modification of non-swelling property mica using nano silver (은나노를 이용한 비팽윤성 운모의 수열적인 표면개질 및 특성평가)

  • Seok, Jeong-Won;Park, Ra-Young;Kim, Pan-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.4
    • /
    • pp.172-178
    • /
    • 2007
  • Mica (muscovite) powders were synthesized by hydrothermal method (horizontal turning method). The hydrothermal conditions for the synthesis of mica were prepared by the ratio of $K_2O : Al(OH)_3 : SiO_2$ = 1 : 3 : 3 mol% as the starting materials with KOH (8 mol%) solution as the hydrothermal solvent and reaction temperature at $260^{\circ}C$ for 72hrs. The synthetic powder used for preparation of nano silver coated mica by vertical hydrothermal treatment. The hydrothermal conditions for the treated as nano silver coating were prepared by the synthetic powder as raw materials, triple distilled water ($0.5{\ell}$) solution as the hydrothermal solvent with nano silver sol (1,000 ppm) as the material of nano silver coating and reaction temperature at $160{\sim}260^{\circ}C$ for 72 hrs. After hydrothermal treatment, structural, judgment of nano silver coating and character of nano silver coated mica were examined by XRD, SEM, TEM-EDX and shake plask method.

Across-wind excitation mechanism for interference of twin tall buildings in tandem arrangement

  • Zu, G.B.;Lam, K.M.
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.397-413
    • /
    • 2018
  • Excitation mechanism of interference effect between two tall buildings is investigated with wind tunnel experiments. Synchronized building surface pressure and flow field measurements by particle image velocimetry (PIV) are conducted to explore the relationship between the disturbed wind flow field and the consequent wind load modification for twin buildings in tandem. This reveals evident excitation mechanisms for the fluctuating across-wind loads on the buildings. For small distance (X/D < 3) between two buildings, the disturbed flow pattern of impaired vortex shedding is observed and the fluctuating across-wind load on the downstream building decreases. For larger distance ($X/D{\geq}3$), strong correlation between the across-wind load of the downstream building and the oscillation of the wake of the upstream building is found. By further analysis with conditional sampling and phase-averaged techniques, the coherent flow structures in the building gap are clearly observed and the wake oscillation of the upstream building is confirmed to be the reason of the magnified across-wind force on the downstream building. For efficient PIV measurement, the experiments use a square-section high-rise building model with geometry scale smaller than the usual value. Interference factors for all three components of wind loads on the building models being surrounded by another identical building with various configurations are measured and compared with those from previous studies made at large geometry scale. The results support that for interference effect between buildings with sharp corners, the length scale effect plays a minor role provided that the minimum Reynolds number requirement is met.

Fabrication and Characteristics of Lateral Type Field Emitter Arrays

  • Lee, Jae-Hoon;Kwon, Ki-Rock;Lee, Myoung-Bok;Hahm, Sung-Ho;Park, Kyu-Man;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.93-101
    • /
    • 2002
  • We have proposed and fabricated two lateral type field emission diodes, poly-Si emitter by utilizing the local oxidation of silicon (LOCOS) and GaN emitter using metal organic chemical vapor deposition (MOCVD) process. The fabricated poly-Si diode exhibited excellent electrical characteristics such as a very low turn-on voltage of 2 V and a high emission current of $300{\;}\bu\textrm{A}/tip$ at the anode-to-cathode voltage of 25 V. These superior field emission characteristics was speculated as a result of strong surface modification inducing a quasi-negative electron affinity and the increase of emitting sites due to local sharp protrusions by an appropriate activation treatment. In respect, two kinds of procedures were proposed for the fabrication of the lateral type GaN emitter: a selective etching method with electron cyclotron resonance-reactive ion etching (ECR-RIE) or a simple selective growth by utilizing $Si_3N_4$ film as a masking layer. The fabricated device using the ECR-RIE exhibited electrical characteristics such as a turn-on voltage of 35 V for $7\bu\textrm{m}$ gap and an emission current of~580 nA/l0tips at anode-to-cathode voltage of 100 V. These new field emission characteristics of GaN tips are believed to be due to a low electron affinity as well as the shorter inter-electrode distance. Compared to lateral type GaN field emission diode using ECR-RIE, re-grown GaN emitters shows sharper shape tips and shorter inter-electrode distance.

The effects of oxygen partial pressure on $SrTiO_3$ films with $RuO_2$ bottom electrode ($SrTiO_3/RuO_2$ 박막 형성시 플라즈마 가스 주입비의 영향)

  • 박치선;김상훈;마재평
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.286-291
    • /
    • 1998
  • $SrTiO_3$[ST] thin films were fabricated on $RuO_2$bottom electrodes by RF magnetron sputtering with various $Ar/O_2$ratio in sputtering gas. As the content of oxygen increases, the leakage current of ST films measured at $10^5$ V/cm decreases from $2.0{\times}10^{-6}A/{\textrm}{cm}^2(Ar/O_2=10/0)$ to $3.8{\times}10^{-7}A/{\textrm}cm^2(Ar/O_2=5/5)$, and the dielectric constant of ST films increases from $70(Ar/O_2=10/0)$ to $190(Ar/O_2=5/5)$. The improvement of electrical properties of ST films is mainly due to the structural modification of ST films such as better crystallinity, smooth surface morphology with the increase of oxygen content in the sputtering gas.

  • PDF

Disassembly and Reconstruction of Stone Pagoda Using 3-Dimensional Image Analysis : Case Study in Simgoksa Seven-storied Stone Pagoda (3차원 영상분석을 활용한 석탑의 해체와 재조립 : 심곡사칠층석탑 사례 연구)

  • Choi, Hee Soo;Lee, Chan Hee;Han, Seong Hee;Lee, Seong Min
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.561-570
    • /
    • 2016
  • This research was a technical case study for the authentic restoration of the seven-storied Simgoksa stone pagoda after disassembly and reconstruction using three-dimensional image analysis. During disassembly and reconstruction, the pagoda's properties were analyzed in terms of the overall modification and displacement of the pagoda. Distortion was minimized by ensuring structural stability during the reconstruction process. Also, the original site of the pagoda was examined in order to utilize it fully during rebuilding. Before reconstruction of the pagoda, moss and lichen on the stone surfaces were removed by scientific surface cleaning. The foundation of the pagoda was reinforced with rammed earth than was similar to the original foundation using a mixture of soil and quicklime. The results are expected to provide valuable data for the reconstruction of other stone pagodas.

Enhanced Photocatalytic Activity of 3,4,9,10-Perylenetetracarboxylic Diimide Modified Titanium Dioxide Under Visible Light Irradiation

  • Kim, Ji-Won;Kim, Hee-Sung;Yu, Kook-Hyun;Fujishima, Akira;Kim, Young-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2849-2853
    • /
    • 2010
  • A method to improve the photocatalytic activity of titanium dioxide by modification with a sensitizer and a metal oxide is proposed. To achieve this goal, we used metal oxides as dopants. In particular, $CaWO_4$ and $Gd_2O_2S$:Tb were used because their 2.6 eV and 2.2 eV band gap energy and optical properties have a large positive effect on photocatalysis. The improvement in the photocatalytic activity of $TiO_2$ modified with $Gd_2O_2S$:Tb under ultraviolet light irradiation is described in a previous study. The present work focuses on the sensitization of metal oxide-modified $TiO_2$. Having observed the ultraviolet-visible absorption spectra of 3,4,9,10-Perylenetetracarboxylic diimide in the wide visible-light region from 400 nm to 650 nm and the broad peaks in its photoluminescence spectra at 695 nm and 717 nm, we decided to use this perylene dye to sensitize modified $TiO_2$ to enhance its activity as a visible-light harvesting photocatalyst. We also explored the positive effects thin-film surface changes stemming from ultraviolet pre-treatment have on photocatalytic activity. Finally, we subjected several metal oxide-modified $TiO_2$ products sensitized by the perylene dye to ultraviolet pre-treatment, obtaining the most active photocatalysts.

Preparation of Silica/collagen Microsphere Composit Doped with Silver Nanoparticles (은 나노입자를 담지한 collagen/silica microsphere 복합체의 제조)

  • Jung, Hyo Jung;Kim, Yeon Bum;Chang, Yoon Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.722-726
    • /
    • 2008
  • Silica microsphere is a world leading innovative material used in adsorbent packing materials in HPLC technology. The application of microsphere lies in the ability to the surface modification of silica with the special materials such as polymers, metals and bio-active materials. Collagen is a major structural protein of connective tissues and has a good biocompatibility. In this study, we prepared the purified silica porous microsphere, having micro diameters in the range of a pore volume at least 50% by the aggregation procedure of colloidal silica with the polymerization method (PICA). The microspheres were modified by collagen hydrogel to improve the biocompatible properties for biomedical product. The silica/collagen microsphere composite doped with silver nanoparticles was prepared and investigated the capabilities of biomaterial application through the evaluation of the structure characteristics of the microsphere composit.

Characteristics of CFRP strengthened tubular joints subjected to different monotonic loadings

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.361-372
    • /
    • 2019
  • Tubular joints are used in the construction of offshore structures and other land-based structures because of its ease of fabrication. These joints are subjected to different environmental loadings in their lifetime. At the time of fabrication or modification of an existing offshore platform, tubular joints are usually strengthened to withstand the environmental loads. Currently, various strengthening techniques such as ring stiffeners, gusset plates are employed to strengthen new and existing tubular joints. Due to some limitations with the present practices, some new techniques need to be addressed. Many researchers used Fibre Reinforced Polymer (FRP) to strengthen tubular joints. Some of the studies were focused on axial compression of Glass Fibre Reinforced Polymer (GFRP) strengthened tubular joints and found that it was an efficient technique. Earlier, the authors had performed studies on Carbon Fibre Reinforced Polymer (CFRP) strengthened tubular joint subjected to axial compression. The study steered to the conclusion that FRP composites is an alternative strengthening technique for tubular joints. In this work, the study was focused on axial compression of Y-joint and in plane and out of plane bending of T-joints. Experimental investigations were performed on these joints, fabricated from ASTM A106 Gr. B steel. Two sets of joints were fabricated for testing, one is a reference joint and the other is a joint strengthened with CFRP. After performing the set of experiments, test results were then compared with the numerical solution in ANSYS Parametric Design Language (APDL). It was observed that the joints strengthened with CFRP were having improved strength, lesser surface displacement and ovalization when compared to the reference joint.

Characteristics of Sr2Ni1.8Mo0.2O6-δ Anode for Utilization in Methane Fuel Conditions in Solid Oxide Fuel Cells

  • Kim, Jun Ho;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.335-343
    • /
    • 2019
  • In this study, $Sr_2Ni_{1.8}Mo_{0.2}O_{6-{\delta}}$ (SNM) with a double perovskite structure was investigated as an alternative anode for use in the $CH_4$ fuel in solid oxide fuel cells. SNM demonstrates a double perovskite phase over $600^{\circ}C$ and marginal crystallization at higher temperatures. The Ni nanoparticles were exsolved from the SNM anode during the fabrication process. As the SNM anode demonstrates poor electrochemical and electro-catalytic properties in the $H_2$ and $CH_4$ fuels, it was modified by applying a samarium-doped ceria (SDC) coating on its surface to improve the cell performance. As a result of this SDC modification, the cell performance improved from $39.4mW/cm^2$ to $117.7mW/cm^2$ in $H_2$ and from $15.9mW/cm^2$ to $66.6mW/cm^2$ in $CH_4$ at $850^{\circ}C$. The mixed ionic and electronic conductive property of the SDC provided electrochemical oxidation sites that are beyond the triple boundary phase sites in the SNM anode. In addition, the carbon deposition on the SDC thin layer was minimized due to the SDC's excellent oxygen ion conductivity.

Calcium release and physical properties of modified carbonate apatite cement as pulp capping agent in dental application

  • Zakaria, Myrna Nurlatifah;Cahyanto, Arief;El-Ghannam, Ahmed
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.346-351
    • /
    • 2018
  • Background: Carbonate apatite ($CO_3Ap$) and silica-calcium phosphate composite (SCPC) are bone substitutes with good prospect for dental application. SCPC creates a hydroxyapatite surface layer and stimulate bone cell function while, $CO_3Ap$ induce apatite crystal formation with good adaptation providing good seal between cement and the bone. Together, these materials will add favorable properties as a pulp capping material to stimulate mineral barrier and maintain pulp vitality. The aim of this study is to investigate modification of $CO_3Ap$ cement combined with SCPC, later term as $CO_3Ap-SCPC$ cement (CAS) in means of its chemical (Calcium release) and physical properties (setting time, DTS and pH value). Methods: The study consist of three groups; group 1 (100% calcium hydroxide, group 2 $CO_3Ap$ (60% DCPA: 40% vaterite, and group 3 CAS (60% DCPA: 20% vaterite: 20% SCPC. Distilled water was employed as a solution for group 1, and $0.2mol/L\;Na_3PO_4$ used for group 2 and group 3. Samples were evaluated with respect to important properties for pulp capping application such as pH, setting time, mechanical strength and calcium release evaluation. Results: The fastest setting time was in $CO_3Ap$ cement group without SCPC, while the addition of 20% SCPC slightly increase the pH value but did not improved the cement mechanical strength, however, the mechanical strength of both $CO_3Ap$ groups were significantly higher than calcium hydroxide. All three groups released calcium ions and had alkaline pH. Highest pH level, as well as calcium released level, was in the control group. Conclusion: The CAS cement had good mechanical and acceptable chemical properties for pulp capping application compared to calcium hydroxide as a gold standard. However, improvements and in vivo studies are to be carried out with the further development of this material.