• Title/Summary/Keyword: surface-modification technology

Search Result 661, Processing Time 0.04 seconds

Surface Modification of Poly(vinylidene fluoride) Membranes using Surface Modifying Macromolecules (SMMs) and Their Application to Pervaporation Separation (SMMs을 이용한 고분자막의 표면개질과 이의 투과증발분리 연구)

  • Rhim, Ji-Won;Lee, Byung-Seong;Kim, Dae-Hoon;Lee, Bo-Sung;Yoon, Seok-Won;Im, Hyeon-Soo;Moon, Go-Young;Nam, Sang-Yong;Byun, Hong-Sik
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.206-213
    • /
    • 2008
  • Poly(vinylidene fluoride) (PVDF) membrane surfaces were modified using surface modifying macromolecules (SMMs). The Zonyl BA-L as SMM was used and the various PVDF membranes containing 0 to 2 wt% SMM were prepared. The resulting membranes were characterized through SEM, contact angle measurements and pervaporation separation of water-ethanol system. SMM layers were created in the surface regions of PVDF membranes by SEM images and the contact angles were increased more than untreated PVDF membranes. The pervaporation was carried out at 50, 60 and $70^{\circ}C$, and the PVDF membranes containing 1 and 2 wt% SMM were used for 10, 20, 50 wt% water in the binary water/ethanol mixtures and pure water. PVDF/2 wt% Zrlnyl BA-L membrane showed the permeability 5.3 $g/m^2hr$ and separation factor 287 at $50^{\circ}C$ for water : ethanol = 10 : 50 solution.

High temperature properties of surface-modified Hastelloy X alloy (표면처리에 따른 Hastelloy X 합금의 고온물성)

  • Cho, Hyun;Lee, Byeong-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.183-189
    • /
    • 2012
  • Surface treatments and their effects on high temperature properties for the Hastelloy X, which is a promising candidate alloy for high temperature heat-transport system, have been evaluated. For TiAlN and $Al_2O_3$ overlay coatings, the two different PVD (physical vapor deposition) methods using an arc discharge and a sputtering, were applied, respectively. In addition, a different surface treatment method of the diffusion coating by a pack cementation of Al (aluminiding) was also adopted in this study. To achieve enhanced thermal oxidation resistance at $1000^{\circ}C$ by suppressing the inhomogeneous formation of thick $Cr_2O_3$ crust at the surface region, a study for the surface modification methods on the morphological and structural properties of Hastelloy X substrates has been conducted. The structural and compositional properties of each sample were characterized before and after heat-treatment at $1000^{\circ}C$ under air and He environment. The results showed that the Al diffusion coating showed the more enhanced high temperature properties than the overlay coatings such as the suppressed thick $Cr_2O_3$ crust formation and lower wear loss.

Synthesis and Characterization of Composite Paper Using Polyamide Fiber and Surface Modified Microfibrillated Cellulose (표면 개질된 마이크로피브릴화 셀룰로오스를 이용한 폴리아마이드 섬유와의 복합페이퍼 제조 및 특성평가)

  • Lee, Jong-Hee;Lim, Jung-Hyurk;Kim, Ki-Young;Kim, Kyung-Min
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.74-79
    • /
    • 2014
  • Microfibrillated cellulose (MFC) was chemically modified with two different silane coupling agents (3-aminopropyltriethoxysilane and 3-mercaptopropyltriethoxysilane) and lauroyl chloride. The surface modification of MFC was confirmed by infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), and contact angle measurements. Composite paper was successfully prepared with surface modified MFC and polyamide (PA) fiber. The surface modification of MFC not only prevented aggregation of MFC but also improved adhesive property between PA fiber and surface modified MFC. It was impossible to prepare papers of only PA fiber because there is no binder to connect PA fibers. That is, surface modified MFC as a binder in PA fiber played a crucial role in making composite paper. Composite paper with silane modified MFC showed higher tensile strength and modulus than composite paper with lauroyl moiety modified MFC. The structure, morphology, and mechanical properties of composite paper were analyzed by scanning electron microscope (SEM) and universal testing machine (UTM).

The preparation of ultra hard nitrogenated DLC film by $N_2^+$ implantation

  • Olofinjana, A.O.;Chen, Z.;Bell, J.M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.165-166
    • /
    • 2002
  • Hydrogen free diamond like carbon (DLC) films were prepared on steel substrates by using a single ion beam in a configuration that allowed sputtering of a graphite target and at the same time allowed to impact the substrate at a grazing angle. The DLC films so prepared have improved properties with increased disorder and with modest hardness that is slightly higher than previously reported values. We have studied the effects of $N_2^+$ ions implantation on such films. It is found that the implantations of nitrogen ions into DLC films lead to chemical modifications that allowed N atoms to be incorporated into the carbon network to produce a nitrogenated DLC. Nano-indentation experiments indicated that the nitrogenated films have consistently higher hardnesses ranging from 30 to 45GPa, which represents a considerable increase in surface hardness, compared with non-nitrogenated precursor films. The investigations by XPS and Raman spectroscopy suggests that the $N_2^+$ implanted DLCs had undergone both chemical and structural modifications through the incorporation of N atoms and the increased ratio of $sp^3/sp^2$ type bonding. The observed high hardness was therefore attributable to these structural and chemical modifications. This result has implication for the preparation of super hard wear resistant films required for tribological functions in devices.

  • PDF

Spray Pyrolysis Deposition of Zinc Oxide Thin Films by ZnO Buffer Layer (ZnO buffer 층을 이용한 초음파 분무열분해 ZnO 박막 증착)

  • Han, In Sub;Park, Il-Kyu
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.403-408
    • /
    • 2017
  • We investigated the effect of ZnO buffer layer on the formation of ZnO thin film by ultrasonic assisted spray pyrolysis deposition. ZnO buffer layer was formed by wet solution method, which was repeated several times. Structural and optical properties of the ZnO thin films deposited on the ZnO buffer layers with various cycles and at various temperatures were investigated by field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence spectrum analysis. The structural investigations showed that three-dimensional island shaped ZnO was formed on the bare Si substrate without buffer layers, while two-dimensional ZnO thin film was deposited on the ZnO buffer layers. In addition, structural and optical investigations showed that the crystalline quality of ZnO thin film was improved by introducing the buffer layers. This improvement was attributed to the modulation of the surface energy of the Si surface by the ZnO buffer layer, which finally resulted in a modification of the growth mode from three to two-dimensional.

Synthesis and Characteristic of Ferric Ferrocyanide Coated Titania/Mica Pearlescent Pigments by Hydrothermal Synthesis Method (수열 합성법에 의해 페릭페로시아나이드가 코팅된 마이카 티나니아 진주광택안료의 합성 및 특성)

  • Lee, Kwan-Sik;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.335-344
    • /
    • 2011
  • The pearlesent pigment has received attention in a diversity of fields like cosmetics, inks, paints and so on. Ferric Ferrocyanide, one of the nano sized pearlescent pigment, is a kind of surface modification pigment that covers a metal oxidized substance or a coloring agent with uniform thickness. Characteristics of pearlescent pigment are various interference color, intense gloss effect and a three-dimensional effect. We synthesised the pearlesent pigment that ferric ferrocyanide can be deposited on the titania/mica surface by hydrothermal synthesis method. The process parameters are concentration of precursor, controlling pH and reaction temperature. The optimun conditions is that amount of iron(III) chloride hexahydrate is 3.1 wt% and amount of potassim ferrocynide trihydrate is 3.6 wt% in the started pH 4.5 at $70^{\circ}C$. The coating rate and coating efficiency of ferric ferrocyanide was about 1.47 % and 96.7 %, respectively. The synthesised pearlesent pigment was characterized by SEM, XRD, FT-IR and EDS.

Silica aerogels for potential sensor material prepared by azeotropic mixture (공비혼합물로 제조된 다공성 센서재료용 실리카 에어로젤)

  • Shlyakhtina, A.V.;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.395-400
    • /
    • 2007
  • Ambient drying sol-gel processing was used for monolithic silica ambigels in the temperature range of $130-250^{\circ}C$. A new method of mesopore ambigels, which mean the aerogels prepared by ambient pressure drying process synthesis, is suggested at first. This method includes two important approaches. The first point is that $SiO_{2}$ surface modification of wet gel was performed by trimethylchlorosilane in n-butanol solution. This procedure is provided the silica gel mesopore structure formation. The second point is a creation of the ternary azeotropic mixture water/n-butanol/octane as porous liquid, which is effectively provided removing of water such a low temperature by 2 step drying condition under ambient pressure. The silica aerogels, which were prepared by ambient pressure drying from azeotropic mixture of water/n-butanol/octane, are transparent, crack-free and mesoporous (pore size ${\sim}$ 5.6 nm) with surface area of ${\sim}$ $923{\;}m^2/g$, bulk density of $0.4{\;}g/cm^3$ and porosity of 85 %.

An overview of functionalised carbon nanomaterial for organic pollutant removal

  • Jun, Lau Yien;Mubarak, N.M.;Yee, Min Juey;Yon, Lau Sie;Bing, Chua Han;Khalid, Mohammad;Abdullah, E.C.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.175-186
    • /
    • 2018
  • Carbon nanomaterials (CNMs), particularly carbon nanotube and graphene-based materials, are rapidly emerging as one of the most effective adsorbents for wastewater treatment. CNMs hold great potential as new generation adsorbents due to their high surface to volume ratio, as well as extraordinary chemical, mechanical and thermal stabilities. However, implementation of pristine CNMs in real world applications are still hindered due to their poor solubility in most solvents. Hence, surface modification of CNMs is essential for wastewater treatment application in order to improve its solubility, chemical stability, fouling resistance and efficiency. Numerous studies have reported the applications of functionalized CNMs as very promising adsorbents for treating organic and inorganic wastewater pollutants. In this paper, the removal of organic dye and phenol contaminants from wastewater using various type of functionalized CNMs are highlighted and summarized. Challenges and future opportunities for application of these CNMs as adsorbents in sustainable wastewater treatment are also addressed in this paper.

Characterization of EVA/PCM/Silica Compound using Silica

  • Kim, Tae-Hyun;Choi, Kyung-Man;Lee, Jong-Hwan;Choi, Myeon-Cheon;Kim, Han-Seong
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.72-78
    • /
    • 2021
  • A phase-change material (PCM) is a material that has the ability to delay heat transfer by absorbing heat from its environment or releasing heat to its environment while its phase changes from solid to liquid or liquid to solid at a specific temperature. As it is applied, it can contribute to environmental conservation such as energy savings and carbon dioxide emission reduction. In order for a PCM to store and release heat, the volume change during its phase transition should be large, and thus a phase transition space is required. When a PCM is used as a polymer additive, it is confined within the polymer, and there is no phase transition space; thus, its ability to absorb and release heat is significantly reduced. Therefore, in this study, porous silica was used to provide EVA/PCM compounds with sufficient space for their phase transition, and to improve the compatibility between the EVA and PCM, modified silica is used: surface-modified 5 wt% silica with 3-methacryloxypropyltrimethoxysilane. The compound was prepared and compared with the silica compound. The presence or absence of the modified silica surface modification was confirmed using Fourier-transform infrared spectroscopy and thermogravimetric analysis, the heat capacity of the compound was evaluated based on a differential scanning calorimetry analysis, and its mechanical strength and morphology were determined using scanning electron microscopy.

Calcification-resistant Effect of Surface-modified Biologic Arteries by Sulfonated Polyethyleneoxide (술폰산화 폴리에틸렌옥사이드로 표면개질한 생체동맥의 석회화 저항 효과)

  • Kim, Hyoung-Mook;Baek, Man-Jong;Sun, Kyung;Lee, Seung-Yeol;Lee, Song-Am;Kim, Kwang-Taik;Lee, In-Sung;Lee, Won-Kyu;Park, Ki-Dong;Kim, Young-Ha
    • Journal of Chest Surgery
    • /
    • v.32 no.11
    • /
    • pp.989-997
    • /
    • 1999
  • Background: Calcific degeneration is the major cause of clinical failure of glutaraldehyde (GA) crosslinked bioprosthetic tissues implanted in the body and necessitates the reoperation or causes death. Surface modification of biologic tissues using sulfonated polyethyleneoixde (PEO-SO3) has been suggested to significantly enhance blood compatibility, biostability and calcification-resistance by means of the synergistic effect of highly mobile and hydrophilic PEO chains and electrical repulsion of negatively charged sulfonate groups. This study was designed to evaluate the anticalcification effect of surface-modification of biologic arteries by direct coupling of PEO-SO3 after GA fixation and changes of calcification according to the implantation period through the quantitative investigation of the deposited calcium and phosphorous contents of the biologic arterial tissues in the canine circulatory implantation model. Material and Method: Total of 16 fresh canine carotid arteries were harvested from eight adult dogs and divided in to GA group(n =8) and PEO-SO3 group(n=8). Sulfonation of diamino-terminated PEO was performed using propane sultone. Canine carotid arteries were only crosslinked with 0.65% GA solution in GA group and modified by direct coupling 5% PEO-SO3 solution after GA crosslinkage for 2 days and stabilized by NaBH4 solution for 16 hours in PEO-SO3 group. In both groups the resected segment of bilateral carotid arteries were reconstructed. Reconstructed segments of the two groups were analysed the quantities of calcium and phosphorous contents after 3(n=4) and 6(n=4) weeks in vivo. Result: After implantation of 3 seeks, PEO-SO3 group showed significantly less depositions.

  • PDF