• 제목/요약/키워드: surface-modification technology

검색결과 658건 처리시간 0.021초

Electrochemical modification of the porosity and zeta potential of montmorillonitic soft rock

  • Wang, Dong;Kang, Tianhe;Han, Wenmei;Liu, Zhiping;Chai, Zhaoyun
    • Geomechanics and Engineering
    • /
    • 제2권3호
    • /
    • pp.191-202
    • /
    • 2010
  • The porosity (including the specific surface area and pore volume-diameter distribution) of montmorillonitic soft rock (MSR) was studied experimentally with an electrochemical treatment, based on which the change in porosity was further analyzed from the perspective of its electrokinetic potential (${\zeta}$ potential) and the isoelectric point of the electric double layer on the surface of the soft rock particles. The variation between the ${\zeta}$ potential and porosity was summarized, and used to demonstrate that the properties of softening, degradation in water, swelling, and disintegration of MSR can be modified by electrochemical treatment. The following conclusions were drawn. The specific surface area and total pore volume decreased, whereas the average pore diameter increased after electrochemical modification. The reduction in the specific surface area indicates a reduction in the dispersibility and swelling-shrinking of the clay minerals. After modification, the ${\zeta}$ potential of the soft rock was positive in the anodic zone, there was no isoelectric point, and the rock had lost its properties of softening, degradation in water, swelling, and disintegration. The ${\zeta}$ potential increased in the intermediate and cathodic zones, the isoelectric point was reduced or unchanged, and the rock properties are reduced. When the ${\zeta}$ potential is increased, the specific surface area and the total pore volume were reduced according to the negative exponent law, and the average pore diameter increased according to the exponent law.

Enhanced Electrochemical Properties of All-Solid-State Batteries Using a Surface-Modified LiNi0.6Co0.2Mn0.2O2 Cathode

  • Lim, Chung Bum;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.411-420
    • /
    • 2020
  • Undesirable interfacial reactions between the cathode and sulfide electrolyte deteriorate the electrochemical performance of all-solid-state cells based on sulfides, presenting a major challenge. Surface modification of cathodes using stable materials has been used as a method for reducing interfacial reactions. In this work, a precursor-based surface modification method using Zr and Mo was applied to a LiNi0.6Co0.2Mn0.2O2 cathode to enhance the interfacial stability between the cathode and sulfide electrolyte. The source ions (Zr and Mo) coated on the precursor-surface diffused into the structure during the heating process, and influenced the structural parameters. This indicated that the coating ions acted as dopants. They also formed a homogenous coating layer, which are expected to be layers of Li-Zr-O or Li-Mo-O, on the surface of the cathode. The composite electrodes containing the surface-modified LiNi0.6Co0.2Mn0.2O2 powders exhibited enhanced electrochemical properties. The impedance value of the cells and the formation of undesirable reaction products on the electrodes were also decreased due to surface modification. These results indicate that the precursor-based surface modification using Zr and Mo is an effective method for suppressing side reactions at the cathode/sulfide electrolyte interface.

keV SURFACE MODIFICATION AND THIN FILM GROWTH

  • Koh, Seok-Keun;Choi, Won-Kook;Youn, Young-Soo;Song, Seok-Kyun;Cho, Jun-Sik;Kim, Ki-Hwan;Jung, Hyung-Jin
    • 한국진공학회지
    • /
    • 제4권S2호
    • /
    • pp.95-99
    • /
    • 1995
  • keV ion beam irradiatin for surface modification and thin film growth have been discussed. keV ion beam irradiation in reactive gas environment has been developed for improving wettability of polymer, and for enhancing adhesion to metal film, and adventages of the method have been reviewed. An epitaxial Cu film on Si(100) substrate has been grown by ionized cluster beam and changes of crystallinity and surface roughness have been discussed. Stoichiometric $SnO_2$ films on Si(100) and glass have been grown by a hybrid ion beam Deposition(2 metal ion sources+1 gas ion source), and nonstoichiometric $SnO_2$ films are controlled by various deposition conditions in the HIB. Surface modification for polymer by kev ion irradiation have been developed. Wetting angle of water to PC has been changed from 68 degree to 49 degree with $Ar^+$ irradiation and to 8 degree with $Ar^+$ irradiation and the oxygen environment. Change of surface phenomena in a keV ion beam and characteristics of the grown films are suggested.

  • PDF

Evaluation on the Mechanical Performance of Low-Quality Recycled Aggregate Through Interface Enhancement Between Cement Matrix and Coarse Aggregate by Surface Modification Technology

  • Choi, Heesup;Choi, Hyeonggil;Lim, Myungkwan;Inoue, Masumi;Kitagaki, Ryoma;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.87-97
    • /
    • 2016
  • In this study, a quantitative review was performed on the mechanical performance, permeation resistance of concrete, and durability of surface-modified coarse aggregates (SMCA) produced using low-quality recycled coarse aggregates, the surface of which was modified using a fine inorganic powder. The shear bond strength was first measured experimentally and the interface between the SMCA and the cement matrix was observed with field-emission scanning electron microscopy. The results showed that a reinforcement of the interfacial transition zone (ITZ), a weak part of the concrete, by coating the surface of the original coarse aggregate with surface-modification material, can help suppress the occurrence of microcracks and improve the mechanical performance of the aggregate. Also, the use of low-quality recycled coarse aggregates, the surfaces of which were modified using inorganic materials, resulted in improved strength, permeability, and durability of concrete. These results are thought to be due to the enhanced adhesion between the recycled coarse aggregates and the cement matrix, which resulted from the improved ITZ in the interface between a coarse aggregate and the cement matrix.

저온 플라즈마 처리를 이용한 파라 아라미드 섬유의 표면 개질 효과 및 역학적 특성 (Surface Modification Effect and Mechanical Property of para-Aramid Fiber by Low-temperature Plasma Treatment)

  • 박성민;권일준;김명순;김삼수;최재영;염정현
    • 한국염색가공학회지
    • /
    • 제24권2호
    • /
    • pp.131-137
    • /
    • 2012
  • para-Aramid fibers were treated by low-temperature plasma to improve the adhesion. The surface of para-aramid fibers were treated with gaseous plasma of several discharge power and treatment time in oxygen gas at 1Torr pressure. The treated fibers at low-temperature plasma were taken oxygen-containing functional groups and micro-crator on the surface. The modified fibers were measured by dynamic contact angle analyzer and XPS(X-ray photoelectron spectroscopy). The Interfacial adhesion properties of aramid fabric and polyurethane resin were determined by T-peel test. The surface of aramid fibers were observed by FE-SEM photographs. It was found that surface modification and chemical component ratio of the aramid fibers were improved wettability and adhesion characterization.

Recent Advances in Carbon-Nanotube-Based Epoxy Composites

  • Jin, Fan-Long;Park, Soo-Jin
    • Carbon letters
    • /
    • 제14권1호
    • /
    • pp.1-13
    • /
    • 2013
  • Carbon nanotubes (CNTs) are increasingly attracting scientific and industrial interest because of their outstanding characteristics, such as a high Young's modulus and tensile strength, low density, and excellent electrical and thermal properties. The incorporation of CNTs into polymer matrices greatly improves the electrical, thermal, and mechanical properties of the materials. Surface modification of CNTs can improve their processibility and dispersion within the composites. This paper aims to review the surface modification of CNTs, processing technologies, and mechanical and electrical properties of CNT-based epoxy composites.

공구강의 내 마모성을 높여주는 레이저 클래딩 기술동향 (Trend of Laser Cladding Technology in Material Processing)

  • 길상철;김환태;김상우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.321-324
    • /
    • 2008
  • The increasing interest in the surface modification by the laser cladding technology in the material processing is placing stringent demands on the manufacturing techniques and performance requirements, and the manufacture employs the high quality and efficiency laser cladding technology. This paper covers recent technical trends of laser cladding technology including the COMPENDEX DB analysis.

  • PDF

PTA 오버레이 공정을 이용한 산업설비부품의 표면경화기술 (The Hardfacing Technology by PTA Overlaying Process)

  • 길상철;김환태;김상우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.358-361
    • /
    • 2009
  • The increasing interest in the surface modification technology by the plasma transferred arc overlaying process in the material processing is placing stringent demands on the manufacturing techniques and performance requirements, and the manufacture employs the high quality and efficiency plasma transferred arc overlaying technology. This paper covers recent technical trends of plasma transferred arc overlaying technology including the COMPENDEX DB analysis.

  • PDF

박판성형을 위한 신속한 금형곡면의 수정 (Rapid Die Surface Modification for Sheet Metal Forming)

  • 유동진
    • 소성∙가공
    • /
    • 제16권7호
    • /
    • pp.538-548
    • /
    • 2007
  • In this paper, a novel approach which enables rapid die surface modification for sheet metal forming process is proposed. In this method an implicit surface which interpolates a given set of control points and displacement constraints is generated to compute the displacements at arbitrary points located on die surface. The proposed method does not depend on the underlying surface representation type and is affected neither by its complexity nor by its quality. In addition, the domain decomposition method is introduced in order to treat large surface model. The global domain of interest is divided into smaller domains where the problem can be solved locally. And then the local solutions are combined together to obtain a global solution. In order to verify the validity and effectiveness of the proposed method, various surface modifications are carried out fur three kinds of die surface model including polygonal surface composed of triangular and rectangular meshes, polynomial surface and NURBS surface.

압력 구동 기반 분리막의 막 오염 저감을 위한 표면 개질 방법 최신 연구 동향 (Current Research Trends on Surface Modification of Pressure-driven Membranes for Fouling Mitigation)

  • 전병문;이형개;김우정;박지훈;김종혁;권영남
    • 멤브레인
    • /
    • 제28권1호
    • /
    • pp.1-20
    • /
    • 2018
  • 고분자 재질의 압력 구동 기반 분리막을 이용하여 담수를 얻기 위한 공정은 에너지 효율이 높은 방법으로 알려져 있다. 하지만, 분리막 운전 중에 투과성능을 떨어트리는 막 오염 문제가 발생 하기에, 막 오염을 제어하는 것은 분리막 공정의 에너지 효율을 높이는 데 필수적이다. 막 오염은 일반적으로 분리막 표면과 막 오염 물질과의 상호 작용으로 발생하며, 분리막 표면을 개질하는 방법은 막 오염을 방지하여 높은 투과 특성을 지속적으로 유지하게 할 수 있는 좋은 방법 중 하나이다. 본 논문에서는 압력 구동 기반 분리막인 미세여과, 한외여과, 나노여과 및 역삼투용 분리막의 표면을 개질할 수 있는 방법을 정리하였다. 구체적인 개질 방법으로는 개질 물질의 흡착 및 코팅 방법인 물리적 방법과 가교제 이용, 자유 라디칼 중합(FRP), 원자 이동 라디칼 중합(ATRP), 플라즈마 및 자외선 조사 기반 중합인 화학적 방법으로 나누어 정리하였다. 본 총설에서는 최근 논문상에 보고되고 있는 물리화학적 표면 개질 방법을 소개하고, 막 오염 저항성을 높일 수 있는 분리막 제조를 위한 연구방향을 제시하고자 한다.