• Title/Summary/Keyword: surface-displayed

Search Result 453, Processing Time 0.028 seconds

Yeast Surface Display of Capsid Protein VP7 of Grass Carp Reovirus: Fundamental Investigation for the Development of Vaccine Against Hemorrhagic Disease

  • Luo, Shaoxiang;Yan, Liming;Zhang, Xiaohua;Yuan, Li;Fang, Qin;Zhang, Yong-An;Dai, Heping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2135-2145
    • /
    • 2015
  • VP7, an outer capsid protein of grass carp reovirus (GCRV), was expressed and displayed on the surface of Saccharomyces cerevisiae for developing an efficient vaccine against hemorrhagic disease of grass carp. The result of flow cytometry analysis indicated that protein VP7 could be displayed on the surface of yeast cells after inducing with galactose. The expression of VP7 was confirmed by western blot analysis and further visualized with confocal microscopy. The specific antibodies against VP7 generated from mice were detectable from all immune groups except the control group, which was immunized with untransformed yeast cells. The displaying VP7 on glycosylation-deficient strain EBYΔMnn9 was detected to induce a relatively low level of specific antibody amongst the three strains. However, the antiserum of EBYΔM9-VP7 showed relative high capacity to neutralize GCRV. Further neutralization testing assays indicated that the neutralizing ability of antiserum of the EBYΔM9-VP7 group appeared concentration dependent, and could be up to 66.7% when the antiserum was diluted to 1:50. This result indicates that appropriate gene modification of glycosylation in a yeast strain has essential effect on the immunogenicity of a yeast-based vaccine.

Study on the Frictional Behavior, Wear and Corrosion Resistance of Textured TiN Coated Layers (집합조직이 존재하는 TiN 코팅 층의 마찰, 마멸, 내부식 특성에 관한 연구)

  • 김희동;김인수;성동영;이민구
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.394-400
    • /
    • 2003
  • TiN coated films exhibit excellent mechanical properties such as high wear, erosion and corrosion resistances and a high thermal stability. Therefore, they are widely applied to a coating material in tools, ornaments, parts and semiconductors. However, the fracture of TiN coated films frequently occurs. The distribution of preferred orientations, i.e., texture, of TiN coated films strongly influences the fracture behavior of these films. In the present study. various TiN coating layers having different textures were prepared by the reactive ion physical vapor deposition and the texture dependence of friction coefficient, erosion and corrosion in these coating layers was investigated. The sample depicting the (115) texture parallel to the coating layer normal displayed a flatter surface than that observed from the sample having the (111) texture. The friction coefficient of TiN thin films was hardly dependent on the texture of coated samples. The samples having (115) texture displayed higher wear, erosion and corrosion resistances than the samples having (111) texture.

Electro-Catalytic Behavior of an Antiarrhythmic Drug, Procainamide and its Electro-Analytical Applications

  • Abbar, Jyothi C.;Meti, Manjunath D.;Nandibewoor, Sharanappa T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.292-300
    • /
    • 2018
  • The electrocatalytic oxidative behavior of an antiarrhythmic drug, procainamide hydrochloride (PAH) at the gold electrode surface has been examined using different voltammetric methods like cyclic, linear-sweep and differential pulse voltammetry. Voltammograms obtained in this study reveal that the electrode exhibit excellent electrocatalytic activity towards oxidation of the drug. The parameters that can affect the peak current at different pH, scan rate and concentration were evaluated. The number of electrons transferred was calculated. The current displayed a wide linear response ranging from 0.5 to $30.0{\mu}M$ with a limit of detection of 56.4 nM. The impact of potential interfering agents was also studied. The electrode displayed wide advantages such as simple sample preparation, appreciable repeatability, reproducibility and also high sensitivity. Furthermore, the feasibility of the proposed method was successfully demonstrated by determining PAH in the spiked human biological sample.

Study on the Correlation between Muscle Activity of Lower Extremity and Sway Speed of Chronic Stroke Patients according to Unstable Surface Training (불안정지지면 훈련에 따른 만성 뇌졸중 환자의 다리 근활성도와 동요속도의 상관성 연구)

  • Seo, Heungwon;Kim, Mungchul
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.1 no.4
    • /
    • pp.75-83
    • /
    • 2013
  • Purpose : This research was conducted to see the correlation between sway speed and muscle activity for lower extremity of stroke patients through unstable surface training. Methods : A total of 60 patients were randomly divided unstable surface group (30 peoples) and stable surface group (30 people). Then they were asked to carry out the same exercise program for 6 weeks. The unstable surface group and stable surface group performed the exercise program on the balance mat and on the hard wood block. We checked the changes of sway speed and the changes in muscle activity for lower extremity. Results : The unstable surface group displayed significantly reduced sway speed, and improved muscle activity of lower extremity. There were significant correlation between change amount of muscle activity and sway velocity in Gastrocnemius, Biceps femoris during unstable surface training(r=.373, p<.05)(r=.369, p<.05). And there were not show significant differences during stable surface training. Conclusion : Judging from this, we can have knowledge that the correlation between increase of muscle activity and decrease of sway velocity for Gastrocnemius, Biceps femoris in the unstable surface training.

The Oxidation of Polymethylsiloxane/MoSi$_2$/SiC/Si-Derived Ceramic Composite Coatings

  • Moon, Jae-Jin;Lee, Dong-Bok;Kim, Deug-Joong
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.85-88
    • /
    • 2003
  • By utilization of preceramic polymer of polymethylsiloxane (PMS), a $MoSi_2$SiOC/SiC ceramic composite was fabricated. The prepared composite displayed superior high temperature oxidation resistance by forming $SiO_2$ on the surface. The thin $SiO_2$ layer had some surface cracks, but they had not adversely deteriorated the oxidation resistance. The composite fabrication method employed in this study can be applied to protect any possible substrate material from aggressive oxidative attack, if the composite were coated on the substrate material.

Electron Microscopic Obsenrations on Micropvle after Sperm Penetration in Rainbow Trout, Oncorhynchus mykiss (정자 침입전후 무지개 송어의 난문에 대한 미세구조적 변화)

  • 윤종만;정구용
    • The Korean Journal of Zoology
    • /
    • v.39 no.2
    • /
    • pp.173-181
    • /
    • 1996
  • The time-course process by which spermatozoa penetrates through the micropvle apparatus into the egg cytoplasm of rainbow trout, Oncorhvnchus mvkiss, was examined with transmission and scanning electron microscopy. In the unfertilized egg, the ess surface beneath the inner opening of the micropylar canal did not differ distinctly from the rest of the animal pole area. A spermatozoon attached to the micropvle opening 20 seconds after insemination. In the initial stases of penetration, the spermatozoon still within the micropvlar canal attached perpendicularly at its apical tip to the ess surface, then the sperm head was rapidly engulfed by the folded egg surface with its manly microvilli. A large fertilization cone with microvillus-free surface appeared on the esS surface sutra-rounding the penetrating spermatozoon. The head portion of the penetrating spermatozoon was completely wrapped by the ess surface with only the tail portion visible externally 30 seconds after insemination. The fertilization cone displayed the tail portion of the penetrating spermatozoon on the central portion of its surface 60 seconds after insemination. 150 seconds after insemination, breakdown of the cortical granules elevation were initiated at the animal pole, then completed at the vegetable pole area. The spermatozoon disappeared from the outer surface of the ess before the fertilization cone completely retracted 250 seconds after insemination. In result, the block to polvspermv to permit entry of a sin81e sperm is considered to be mechanical by the rnorpholoSical design of the micropvle and fertilization cone.

  • PDF

Development of a Novel Cell Surface Attachment System to Display Multi-Protein Complex Using the Cohesin-Dockerin Binding Pair

  • Ko, Hyeok-Jin;Song, Heesang;Choi, In-Geol
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1183-1189
    • /
    • 2021
  • Autodisplay of a multimeric protein complex on a cell surface is limited by intrinsic factors such as the types and orientations of anchor modules. Moreover, improper folding of proteins to be displayed often hinders functional cell surface display. While overcoming these drawbacks, we ultimately extended the applicability of the autodisplay platform to the display of a protein complex. We designed and constructed a cell surface attachment (CSA) system that uses a non-covalent protein-protein interaction. We employed the high-affinity interaction mediated by an orthogonal cohesin-dockerin (Coh-Doc) pair from Archaeoglobus fulgidus to build the CSA system. Then, we validated the orthogonal Coh-Doc binding by attaching a monomeric red fluorescent protein to the cell surface. In addition, we evaluated the functional anchoring of proteins fused with the Doc module to the autodisplayed Coh module on the surface of Escherichia coli. The designed CSA system was applied to create a functional attachment of dimeric α-neoagarobiose hydrolase to the surface of E. coli cells.

Effect of Chemically Etched Surface Microstructure on Tribological Behaviors

  • Hye-Min Kwon;Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.84-90
    • /
    • 2024
  • This study investigates the effect of the surface microstructure on the tribological characteristics of glass substrates. Chemical etching using hydrofluoric acid and ammonium hydrogen fluoride was employed to create controlled asperity structures on glass surfaces. By varying the etching time from 10 to 50 min, different surface morphologies were obtained and characterized using optical microscopy, surface roughness measurements, and water contact angle analysis. Friction tests were performed using a stainless steel ball as the counter surface to evaluate the tribological behavior of the etched specimens. The results showed that the specimen etched for 20 min exhibited the lowest and most stable friction coefficient, which was attributed to the formation of a uniform and dense asperity structure that effectively reduced the stress concentration and wear at the contact interface. In contrast, specimens etched for shorter (10 min) or longer (30-50 min) durations displayed higher friction coefficients and accelerated wear owing to nonuniform asperity structures that led to local stress concentration. Optical microscopy of the wear tracks further confirmed the superior wear resistance of the 20-minute etched specimen. These findings highlight the importance of optimizing the etching process parameters to achieve the desired surface morphology for enhanced tribological performance, suggesting the potential of chemical etching as a surface modification technique for various materials in tribological applications.

Novel Properties for Endoglucanase Acquired by Cell-Surface Display Technique

  • Shi, Baosheng;Ke, Xiaojing;Yu, Hongwei;Xie, Jing;Jia, Yingmin;Guo, Runfang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1856-1862
    • /
    • 2015
  • In order to improve the stability of endoglucanase under thermal and acidic conditions, the endoglucanase gene was fused to the N-terminus of the Saccharomyces cerevisiae pir gene, encoding the cell wall protein PIR. The fusion gene was transformed into Pichia pastoris GS115 for expression. A resulting strain with high expression and high activity was identified by examining resistance to Geneticin 418, Congo red staining, and quantitative analysis of enzyme activity. SDS-PAGE analysis revealed that the endoglucanase was successfully displayed on the yeast cell surface. The displayed endoglucanase (DEG) showed maximum activity towards sodium carboxyl methyl cellulose at approximately 275 IU/g cell dry weight. DEG exhibited greater than 60% residual activity in the pH range 2.5-8.5, higher than free endoglucanase (FEG), which had 40% residual activity at the same pH range. The highest tolerated temperature for DEG was 70℃, much higher than that of FEG, which was approximately 50℃. Moreover, DEG showed 91.1% activity at 65℃ for 120 min, while FEG only kept 77.8% residual activity over the same period. The half-life of DEG was 270 min at 65℃, compared with only 150 min for FEG. DEG could be used repeatedly at least three times. These results suggest that the DEG has broad applications as a yeast whole-cell biocatalyst, due to its novel properties of high catalytic efficiency, acid-thermal stabilities, and reusability.

3D modeling of a surface acoustic wave for wireless sensors (무선 센서용 표면탄성파의 3 차원 모델링)

  • Cuong, Tran Ngoc;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.111-111
    • /
    • 2009
  • In this work, we discuss simulation of surface acoustic wave device using Comsol Multiphysics. The structure SAW device based on piezoelectric thin film aluminum-nitride (AlN) on silicon was simulated. Some parameters of SAW device such as surface velocity, displacement of piezoelectric thin film were evaluated by software. Many modes and shapes of wave are also discussed in this paper. For evaluation physical parameters of AlN piezoelectric layer, the SAW resonator was modeled and simulation results were also compared with experiment results. we simulated arid evaluated the surface Rayleigh wave of AlN thin film on silicon substrate. Results simulation and experiment showed the surface velocity of AlN thin film was about 5200 m/s and shape of surface wave was also displayed. This paper has also proposed as method to study SAW characteristic of piezoelectric thin film and found out measurement values accurately of film such as stiffness matrix, piezoelectric matrix. These values are very important in calculation and design SAW device or MEMS device based on AlN piezoelectric layer.

  • PDF